Delete DataLoader.py
Browse files- DataLoader.py +0 -108
DataLoader.py
DELETED
@@ -1,108 +0,0 @@
|
|
1 |
-
#Class to fetch news and stock data from the web for a specific ticker and combine them into a dataframe.
|
2 |
-
|
3 |
-
import pandas as pd
|
4 |
-
import yfinance as yf
|
5 |
-
from pygooglenews import GoogleNews
|
6 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
-
from transformers import pipeline
|
8 |
-
class DataLoader:
|
9 |
-
def __init__(self, ticker, time_period_news, time_period_stock, news_decay_rate = 0):
|
10 |
-
self.ticker = ticker
|
11 |
-
self.time_period_news = time_period_news
|
12 |
-
self.time_period_stock = time_period_stock
|
13 |
-
self.news_decay_rate = news_decay_rate
|
14 |
-
|
15 |
-
def get_data(self):
|
16 |
-
stock_data = self.get_stock_data()
|
17 |
-
news_data = self.get_news_data()
|
18 |
-
news_sentiment = self.get_sentiment(news_data)
|
19 |
-
combined_data = self.combine_data(stock_data, news_sentiment)
|
20 |
-
|
21 |
-
if self.news_decay_rate != 0:
|
22 |
-
combined_data = self.news_decay(combined_data, self.news_decay_rate)
|
23 |
-
|
24 |
-
return combined_data
|
25 |
-
|
26 |
-
|
27 |
-
def get_stock_data(self):
|
28 |
-
data = yf.download(self.ticker , period = self.time_period_stock)
|
29 |
-
df = pd.DataFrame()
|
30 |
-
df['Open'] = data['Open']
|
31 |
-
df['Close'] = data['Close']
|
32 |
-
df['High'] = data['High']
|
33 |
-
df['Low'] = data['Low']
|
34 |
-
df['Volume'] = data['Volume']
|
35 |
-
|
36 |
-
return df
|
37 |
-
|
38 |
-
def get_news_data(self):
|
39 |
-
googlenews = GoogleNews()
|
40 |
-
news_data = googlenews.search(self.ticker, when=self.time_period_news)
|
41 |
-
news_data = pd.DataFrame(news_data['entries'])
|
42 |
-
return news_data
|
43 |
-
|
44 |
-
def get_sentiment(self, news_data):
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
46 |
-
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
47 |
-
classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
48 |
-
|
49 |
-
news_sentiment = []
|
50 |
-
for i in range(len(news_data)):
|
51 |
-
sentiment = classifier(news_data['title'][i], top_k=None)
|
52 |
-
postive_score = sentiment[0]['score']
|
53 |
-
negative_score = sentiment[1]['score']
|
54 |
-
neutral_score = sentiment[2]['score']
|
55 |
-
reformmated_time_stamp = pd.to_datetime(news_data['published'][i]).date()
|
56 |
-
news_sentiment.append({'Date': reformmated_time_stamp, 'positive_score': postive_score, 'negative_score': negative_score, 'neutral_score': neutral_score})
|
57 |
-
return pd.DataFrame(news_sentiment)
|
58 |
-
|
59 |
-
def combine_data(self, stock_data, news_sentiment):
|
60 |
-
news_sentiment = (
|
61 |
-
news_sentiment
|
62 |
-
.groupby('Date')
|
63 |
-
.mean()
|
64 |
-
.fillna(0)
|
65 |
-
.reset_index()
|
66 |
-
.set_index('Date')
|
67 |
-
.sort_index()
|
68 |
-
)
|
69 |
-
|
70 |
-
common_index = pd.date_range(
|
71 |
-
start=pd.Timestamp(min(pd.Timestamp(stock_data.index[0]), pd.Timestamp(news_sentiment.index[0]))),
|
72 |
-
end=pd.Timestamp(max(pd.Timestamp(stock_data.index[-1]), pd.Timestamp(news_sentiment.index[-1]))),
|
73 |
-
freq='D'
|
74 |
-
)
|
75 |
-
stock_data = stock_data.reindex(common_index).fillna(-1)
|
76 |
-
|
77 |
-
news_sentiment = news_sentiment.reindex(common_index).fillna(0)
|
78 |
-
|
79 |
-
#Ensure stock_data and news_sentiment have combatile indices
|
80 |
-
stock_data.index = pd.to_datetime(stock_data.index).normalize()
|
81 |
-
news_sentiment.index = pd.to_datetime(news_sentiment.index).normalize()
|
82 |
-
|
83 |
-
combined_data = pd.merge(
|
84 |
-
stock_data,
|
85 |
-
news_sentiment,
|
86 |
-
how='left',
|
87 |
-
left_index=True,
|
88 |
-
right_index=True
|
89 |
-
)
|
90 |
-
|
91 |
-
#Drop all close values that are -1
|
92 |
-
combined_data = combined_data[combined_data['Close'] != -1]
|
93 |
-
#fill all missing values with 0
|
94 |
-
combined_data = combined_data.fillna(0)
|
95 |
-
|
96 |
-
return combined_data
|
97 |
-
|
98 |
-
def news_decay(self, Combined_data, decay_rate):
|
99 |
-
#We have lots of days in the data with no news. We will fill these days with the previous days news * decay_rate
|
100 |
-
#This will allow us to have a more continuous news data
|
101 |
-
combined_data = Combined_data.copy()
|
102 |
-
news_columns = ['positive_score', 'negative_score', 'neutral_score']
|
103 |
-
#We want to start from the oldest date and work our way to the newest date
|
104 |
-
for i in range(1, len(combined_data)):
|
105 |
-
for column in news_columns:
|
106 |
-
if combined_data[column][i] == 0 and combined_data[column][i-1] != 0:
|
107 |
-
combined_data[column][i] = combined_data[column][i-1] * decay_rate
|
108 |
-
return combined_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|