Create inference_data_pipeline.py
Browse files- inference_data_pipeline.py +92 -0
inference_data_pipeline.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Class to fetch news and stock data from the web for a specific ticker and combine them into a dataframe.
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import yfinance as yf
|
5 |
+
from pygooglenews import GoogleNews
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
from transformers import pipeline
|
8 |
+
class InferenceDataPipeline:
|
9 |
+
def __init__(self, ticker, time_period_news, time_period_stock):
|
10 |
+
self.ticker = ticker
|
11 |
+
self.time_period_news = time_period_news
|
12 |
+
self.time_period_stock = time_period_stock
|
13 |
+
|
14 |
+
def get_data(self):
|
15 |
+
stock_data = self.get_stock_data()
|
16 |
+
news_data = self.get_news_data()
|
17 |
+
news_sentiment = self.get_sentiment(news_data)
|
18 |
+
combined_data = self.combine_data(stock_data, news_sentiment)
|
19 |
+
|
20 |
+
return combined_data
|
21 |
+
|
22 |
+
|
23 |
+
def get_stock_data(self):
|
24 |
+
data = yf.download(self.ticker , period = self.time_period_stock)
|
25 |
+
df = pd.DataFrame()
|
26 |
+
df['Open'] = data['Open']
|
27 |
+
df['Close'] = data['Close']
|
28 |
+
df['High'] = data['High']
|
29 |
+
df['Low'] = data['Low']
|
30 |
+
df['Volume'] = data['Volume']
|
31 |
+
|
32 |
+
return df
|
33 |
+
|
34 |
+
def get_news_data(self):
|
35 |
+
googlenews = GoogleNews()
|
36 |
+
news_data = googlenews.search(self.ticker, when=self.time_period_news)
|
37 |
+
news_data = pd.DataFrame(news_data['entries'])
|
38 |
+
return news_data
|
39 |
+
|
40 |
+
def get_sentiment(self, news_data):
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
42 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
43 |
+
classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
44 |
+
|
45 |
+
news_sentiment = []
|
46 |
+
for i in range(len(news_data)):
|
47 |
+
sentiment = classifier(news_data['title'][i], top_k=None)
|
48 |
+
postive_score = sentiment[0]['score']
|
49 |
+
negative_score = sentiment[1]['score']
|
50 |
+
neutral_score = sentiment[2]['score']
|
51 |
+
reformmated_time_stamp = pd.to_datetime(news_data['published'][i]).date()
|
52 |
+
news_sentiment.append({'Date': reformmated_time_stamp, 'positive_score': postive_score, 'negative_score': negative_score, 'neutral_score': neutral_score})
|
53 |
+
return pd.DataFrame(news_sentiment)
|
54 |
+
|
55 |
+
def combine_data(self, stock_data, news_sentiment):
|
56 |
+
news_sentiment = (
|
57 |
+
news_sentiment
|
58 |
+
.groupby('Date')
|
59 |
+
.mean()
|
60 |
+
.fillna(0)
|
61 |
+
.reset_index()
|
62 |
+
.set_index('Date')
|
63 |
+
.sort_index()
|
64 |
+
)
|
65 |
+
|
66 |
+
common_index = pd.date_range(
|
67 |
+
start=pd.Timestamp(min(pd.Timestamp(stock_data.index[0]), pd.Timestamp(news_sentiment.index[0]))),
|
68 |
+
end=pd.Timestamp(max(pd.Timestamp(stock_data.index[-1]), pd.Timestamp(news_sentiment.index[-1]))),
|
69 |
+
freq='D'
|
70 |
+
)
|
71 |
+
stock_data = stock_data.reindex(common_index).fillna(-1)
|
72 |
+
|
73 |
+
news_sentiment = news_sentiment.reindex(common_index).fillna(0)
|
74 |
+
|
75 |
+
#Ensure stock_data and news_sentiment have combatile indices
|
76 |
+
stock_data.index = pd.to_datetime(stock_data.index).normalize()
|
77 |
+
news_sentiment.index = pd.to_datetime(news_sentiment.index).normalize()
|
78 |
+
|
79 |
+
combined_data = pd.merge(
|
80 |
+
stock_data,
|
81 |
+
news_sentiment,
|
82 |
+
how='left',
|
83 |
+
left_index=True,
|
84 |
+
right_index=True
|
85 |
+
)
|
86 |
+
|
87 |
+
#Drop all close values that are -1
|
88 |
+
combined_data = combined_data[combined_data['Close'] != -1]
|
89 |
+
#fill all missing values with 0
|
90 |
+
combined_data = combined_data.fillna(0)
|
91 |
+
|
92 |
+
return combined_data
|