Spaces:
Paused
Paused
| title: MMAudio β generating synchronized audio from video/text | |
| emoji: π | |
| colorFrom: blue | |
| colorTo: indigo | |
| sdk: gradio | |
| app_file: app.py | |
| pinned: false | |
| # [Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis](https://hkchengrex.github.io/MMAudio) | |
| [Ho Kei Cheng](https://hkchengrex.github.io/), [Masato Ishii](https://scholar.google.co.jp/citations?user=RRIO1CcAAAAJ), [Akio Hayakawa](https://scholar.google.com/citations?user=sXAjHFIAAAAJ), [Takashi Shibuya](https://scholar.google.com/citations?user=XCRO260AAAAJ), [Alexander Schwing](https://www.alexander-schwing.de/), [Yuki Mitsufuji](https://www.yukimitsufuji.com/) | |
| University of Illinois Urbana-Champaign, Sony AI, and Sony Group Corporation | |
| [[Paper (being prepared)]](https://hkchengrex.github.io/MMAudio) [[Project Page]](https://hkchengrex.github.io/MMAudio) | |
| **Note: This repository is still under construction. Single-example inference should work as expected. The training code will be added. Code is subject to non-backward-compatible changes.** | |
| ## Highlight | |
| MMAudio generates synchronized audio given video and/or text inputs. | |
| Our key innovation is multimodal joint training which allows training on a wide range of audio-visual and audio-text datasets. | |
| Moreover, a synchronization module aligns the generated audio with the video frames. | |
| ## Results | |
| (All audio from our algorithm MMAudio) | |
| Videos from Sora: | |
| https://github.com/user-attachments/assets/82afd192-0cee-48a1-86ca-bd39b8c8f330 | |
| Videos from MovieGen/Hunyuan Video/VGGSound: | |
| https://github.com/user-attachments/assets/29230d4e-21c1-4cf8-a221-c28f2af6d0ca | |
| For more results, visit https://hkchengrex.com/MMAudio/video_main.html. | |
| ## Installation | |
| We have only tested this on Ubuntu. | |
| ### Prerequisites | |
| We recommend using a [miniforge](https://github.com/conda-forge/miniforge) environment. | |
| - Python 3.8+ | |
| - PyTorch **2.5.1+** and corresponding torchvision/torchaudio (pick your CUDA version https://pytorch.org/) | |
| - ffmpeg<7 ([this is required by torchaudio](https://pytorch.org/audio/master/installation.html#optional-dependencies), you can install it in a miniforge environment with `conda install -c conda-forge 'ffmpeg<7'`) | |
| **Clone our repository:** | |
| ```bash | |
| git clone https://github.com/hkchengrex/MMAudio.git | |
| ``` | |
| **Install with pip:** | |
| ```bash | |
| cd MMAudio | |
| pip install -e . | |
| ``` | |
| (If you encounter the File "setup.py" not found error, upgrade your pip with pip install --upgrade pip) | |
| **Pretrained models:** | |
| The models will be downloaded automatically when you run the demo script. MD5 checksums are provided in `mmaudio/utils/download_utils.py` | |
| | Model | Download link | File size | | |
| | -------- | ------- | ------- | | |
| | Flow prediction network, small 16kHz | <a href="https://databank.illinois.edu/datafiles/k6jve/download" download="mmaudio_small_16k.pth">mmaudio_small_16k.pth</a> | 601M | | |
| | Flow prediction network, small 44.1kHz | <a href="https://databank.illinois.edu/datafiles/864ya/download" download="mmaudio_small_44k.pth">mmaudio_small_44k.pth</a> | 601M | | |
| | Flow prediction network, medium 44.1kHz | <a href="https://databank.illinois.edu/datafiles/pa94t/download" download="mmaudio_medium_44k.pth">mmaudio_medium_44k.pth</a> | 2.4G | | |
| | Flow prediction network, large 44.1kHz **(recommended)** | <a href="https://databank.illinois.edu/datafiles/4jx76/download" download="mmaudio_large_44k.pth">mmaudio_large_44k.pth</a> | 3.9G | | |
| | 16kHz VAE | <a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-16.pth">v1-16.pth</a> | 655M | | |
| | 16kHz BigVGAN vocoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/best_netG.pt">best_netG.pt</a> | 429M | | |
| | 44.1kHz VAE |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-44.pth">v1-44.pth</a> | 1.2G | | |
| | Synchformer visual encoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/synchformer_state_dict.pth">synchformer_state_dict.pth</a> | 907M | | |
| The 44.1kHz vocoder will be downloaded automatically. | |
| The expected directory structure (full): | |
| ```bash | |
| MMAudio | |
| βββ ext_weights | |
| β βββ best_netG.pt | |
| β βββ synchformer_state_dict.pth | |
| β βββ v1-16.pth | |
| β βββ v1-44.pth | |
| βββ weights | |
| β βββ mmaudio_small_16k.pth | |
| β βββ mmaudio_small_44k.pth | |
| β βββ mmaudio_medium_44k.pth | |
| β βββ mmaudio_large_44k.pth | |
| βββ ... | |
| ``` | |
| The expected directory structure (minimal, for the recommended model only): | |
| ```bash | |
| MMAudio | |
| βββ ext_weights | |
| β βββ synchformer_state_dict.pth | |
| β βββ v1-44.pth | |
| βββ weights | |
| β βββ mmaudio_large_44k.pth | |
| βββ ... | |
| ``` | |
| ## Demo | |
| By default, these scripts use the `large_44k` model. | |
| In our experiments, inference only takes around 6GB of GPU memory (in 16-bit mode) which should fit in most modern GPUs. | |
| ### Command-line interface | |
| With `demo.py` | |
| ```bash | |
| python demo.py --duration=8 --video=<path to video> --prompt "your prompt" | |
| ``` | |
| The output (audio in `.flac` format, and video in `.mp4` format) will be saved in `./output`. | |
| See the file for more options. | |
| Simply omit the `--video` option for text-to-audio synthesis. | |
| The default output (and training) duration is 8 seconds. Longer/shorter durations could also work, but a large deviation from the training duration may result in a lower quality. | |
| ### Gradio interface | |
| Supports video-to-audio and text-to-audio synthesis. | |
| ``` | |
| python gradio_demo.py | |
| ``` | |
| ### Known limitations | |
| 1. The model sometimes generates undesired unintelligible human speech-like sounds | |
| 2. The model sometimes generates undesired background music | |
| 3. The model struggles with unfamiliar concepts, e.g., it can generate "gunfires" but not "RPG firing". | |
| We believe all of these three limitations can be addressed with more high-quality training data. | |
| ## Training | |
| Work in progress. | |
| ## Evaluation | |
| Work in progress. | |
| ## Acknowledgement | |
| Many thanks to: | |
| - [Make-An-Audio 2](https://github.com/bytedance/Make-An-Audio-2) for the 16kHz BigVGAN pretrained model | |
| - [BigVGAN](https://github.com/NVIDIA/BigVGAN) | |
| - [Synchformer](https://github.com/v-iashin/Synchformer) | |