GoBoKyung commited on
Commit
8db4fd8
·
1 Parent(s): 5a5c67e
Files changed (1) hide show
  1. app.py +71 -33
app.py CHANGED
@@ -1,10 +1,12 @@
1
  import gradio as gr
2
- from PIL import Image
 
 
3
  import numpy as np
4
- from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
5
  import tensorflow as tf
 
6
 
7
- # Load the Segformer model and feature extractor
8
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
9
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
10
  )
@@ -12,34 +14,6 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
12
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
13
  )
14
 
15
- def sepia(image_path):
16
- input_img = Image.open(image_path)
17
-
18
- inputs = feature_extractor(images=input_img, return_tensors="tf")
19
- outputs = model(**inputs)
20
- logits = outputs.logits
21
-
22
- logits = tf.transpose(logits, [0, 2, 3, 1])
23
- logits = tf.image.resize(
24
- logits, input_img.size[::-1]
25
- )
26
-
27
- seg = tf.math.argmax(logits, axis=-1)[0]
28
-
29
- colormap = np.asarray(ade_palette())
30
- color_seg = np.zeros(
31
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
32
- )
33
-
34
- for label, color in enumerate(colormap):
35
- color_seg[seg.numpy() == label, :] = color
36
-
37
- # Combine original image with segmentation mask
38
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
39
- pred_img = pred_img.astype(np.uint8)
40
-
41
- return pred_img
42
-
43
  def ade_palette():
44
  """ADE20K palette that maps each class to RGB values."""
45
  return [
@@ -64,10 +38,74 @@ def ade_palette():
64
  [156, 200, 56]
65
  ]
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  demo = gr.Interface(fn=sepia,
68
- inputs=gr.File(type="image"),
69
- outputs=gr.Image(),
70
  examples=["img_1.jpg", "img_2.jpeg", "img_3.jpg", "img_4.jpg", "img_5.png"],
71
  allow_flagging='never')
72
 
 
73
  demo.launch()
 
1
  import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
  import numpy as np
6
+ from PIL import Image
7
  import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
 
 
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
12
  )
 
14
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
15
  )
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  def ade_palette():
18
  """ADE20K palette that maps each class to RGB values."""
19
  return [
 
38
  [156, 200, 56]
39
  ]
40
 
41
+ labels_list = []
42
+
43
+ with open(r'labels.txt', 'r') as fp:
44
+ for line in fp:
45
+ labels_list.append(line[:-1])
46
+
47
+ colormap = np.asarray(ade_palette())
48
+
49
+ def label_to_color_image(label):
50
+ if label.ndim != 2:
51
+ raise ValueError("Expect 2-D input label")
52
+
53
+ if np.max(label) >= len(colormap):
54
+ raise ValueError("label value too large.")
55
+ return colormap[label]
56
+
57
+ def draw_plot(pred_img, seg):
58
+ fig = plt.figure(figsize=(20, 15))
59
+
60
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
61
+
62
+ plt.subplot(grid_spec[0])
63
+ plt.imshow(pred_img)
64
+ plt.axis('off')
65
+ LABEL_NAMES = np.asarray(labels_list)
66
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
67
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
68
+
69
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
70
+ ax = plt.subplot(grid_spec[1])
71
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
72
+ ax.yaxis.tick_right()
73
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
74
+ plt.xticks([], [])
75
+ ax.tick_params(width=0.0, labelsize=25)
76
+ return fig
77
+
78
+ def sepia(input_img):
79
+ input_img = Image.fromarray(input_img)
80
+
81
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
82
+ outputs = model(**inputs)
83
+ logits = outputs.logits
84
+
85
+ logits = tf.transpose(logits, [0, 2, 3, 1])
86
+ logits = tf.image.resize(
87
+ logits, input_img.size[::-1]
88
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
89
+ seg = tf.math.argmax(logits, axis=-1)[0]
90
+
91
+ color_seg = np.zeros(
92
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
93
+ ) # height, width, 3
94
+ for label, color in enumerate(colormap):
95
+ color_seg[seg.numpy() == label, :] = color
96
+
97
+ # Show image + mask
98
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
99
+ pred_img = pred_img.astype(np.uint8)
100
+
101
+ fig = draw_plot(pred_img, seg)
102
+ return fig
103
+
104
  demo = gr.Interface(fn=sepia,
105
+ inputs=gr.Image(shape=(400, 600)),
106
+ outputs=['plot'],
107
  examples=["img_1.jpg", "img_2.jpeg", "img_3.jpg", "img_4.jpg", "img_5.png"],
108
  allow_flagging='never')
109
 
110
+
111
  demo.launch()