GoBoKyung commited on
Commit
5a5c67e
·
1 Parent(s): e7dc45d
Files changed (1) hide show
  1. app.py +32 -70
app.py CHANGED
@@ -1,12 +1,10 @@
1
  import gradio as gr
2
-
3
- from matplotlib import gridspec
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
  from PIL import Image
7
- import tensorflow as tf
8
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
 
9
 
 
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
12
  )
@@ -14,6 +12,34 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
15
  )
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  def ade_palette():
18
  """ADE20K palette that maps each class to RGB values."""
19
  return [
@@ -38,74 +64,10 @@ def ade_palette():
38
  [156, 200, 56]
39
  ]
40
 
41
- labels_list = []
42
-
43
- with open(r'labels.txt', 'r') as fp:
44
- for line in fp:
45
- labels_list.append(line[:-1])
46
-
47
- colormap = np.asarray(ade_palette())
48
-
49
- def label_to_color_image(label):
50
- if label.ndim != 2:
51
- raise ValueError("Expect 2-D input label")
52
-
53
- if np.max(label) >= len(colormap):
54
- raise ValueError("label value too large.")
55
- return colormap[label]
56
-
57
- def draw_plot(pred_img, seg):
58
- fig = plt.figure(figsize=(20, 15))
59
-
60
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
61
-
62
- plt.subplot(grid_spec[0])
63
- plt.imshow(pred_img)
64
- plt.axis('off')
65
- LABEL_NAMES = np.asarray(labels_list)
66
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
67
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
68
-
69
- unique_labels = np.unique(seg.numpy().astype("uint8"))
70
- ax = plt.subplot(grid_spec[1])
71
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
72
- ax.yaxis.tick_right()
73
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
74
- plt.xticks([], [])
75
- ax.tick_params(width=0.0, labelsize=25)
76
- return fig
77
-
78
- def sepia(input_img):
79
- input_img = Image.fromarray(input_img)
80
-
81
- inputs = feature_extractor(images=input_img, return_tensors="tf")
82
- outputs = model(**inputs)
83
- logits = outputs.logits
84
-
85
- logits = tf.transpose(logits, [0, 2, 3, 1])
86
- logits = tf.image.resize(
87
- logits, input_img.size[::-1]
88
- ) # We reverse the shape of `image` because `image.size` returns width and height.
89
- seg = tf.math.argmax(logits, axis=-1)[0]
90
-
91
- color_seg = np.zeros(
92
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
93
- ) # height, width, 3
94
- for label, color in enumerate(colormap):
95
- color_seg[seg.numpy() == label, :] = color
96
-
97
- # Show image + mask
98
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
99
- pred_img = pred_img.astype(np.uint8)
100
-
101
- fig = draw_plot(pred_img, seg)
102
- return fig
103
-
104
  demo = gr.Interface(fn=sepia,
105
- inputs=gr.Textbox(label="Image Path", type="text"),
106
  outputs=gr.Image(),
107
  examples=["img_1.jpg", "img_2.jpeg", "img_3.jpg", "img_4.jpg", "img_5.png"],
108
  allow_flagging='never')
109
 
110
-
111
  demo.launch()
 
1
  import gradio as gr
 
 
 
 
2
  from PIL import Image
3
+ import numpy as np
4
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
5
+ import tensorflow as tf
6
 
7
+ # Load the Segformer model and feature extractor
8
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
9
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
10
  )
 
12
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
13
  )
14
 
15
+ def sepia(image_path):
16
+ input_img = Image.open(image_path)
17
+
18
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
19
+ outputs = model(**inputs)
20
+ logits = outputs.logits
21
+
22
+ logits = tf.transpose(logits, [0, 2, 3, 1])
23
+ logits = tf.image.resize(
24
+ logits, input_img.size[::-1]
25
+ )
26
+
27
+ seg = tf.math.argmax(logits, axis=-1)[0]
28
+
29
+ colormap = np.asarray(ade_palette())
30
+ color_seg = np.zeros(
31
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
32
+ )
33
+
34
+ for label, color in enumerate(colormap):
35
+ color_seg[seg.numpy() == label, :] = color
36
+
37
+ # Combine original image with segmentation mask
38
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
39
+ pred_img = pred_img.astype(np.uint8)
40
+
41
+ return pred_img
42
+
43
  def ade_palette():
44
  """ADE20K palette that maps each class to RGB values."""
45
  return [
 
64
  [156, 200, 56]
65
  ]
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  demo = gr.Interface(fn=sepia,
68
+ inputs=gr.File(type="image"),
69
  outputs=gr.Image(),
70
  examples=["img_1.jpg", "img_2.jpeg", "img_3.jpg", "img_4.jpg", "img_5.png"],
71
  allow_flagging='never')
72
 
 
73
  demo.launch()