reflection / app.py
fullstack's picture
.
6421222
raw
history blame
1.84 kB
import gradio as gr
import requests
import os
# Set up the API endpoint and key
API_URL = os.getenv("BASE_URL")
API_KEY = os.getenv("RUNPOD_API_KEY") # Make sure to set this in your Hugging Face Space secrets
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for human, assistant in history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
data = {
"model": "forcemultiplier/fmx-reflective-2b", # Adjust if needed
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p
}
response = requests.post(API_URL, headers=headers, json=data)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"Error: {response.status_code} - {response.text}"
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are an advanced artificial intelligence system, capable of <thinking> <reflection> and you output a brief and to-the-point <output>.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()