import gradio as gr import requests import os # Set up the API endpoint and key API_URL = os.getenv("BASE_URL") API_KEY = os.getenv("RUNPOD_API_KEY") # Make sure to set this in your Hugging Face Space secrets headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for human, assistant in history: messages.append({"role": "user", "content": human}) messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) data = { "model": "forcemultiplier/fmx-reflective-2b", # Adjust if needed "messages": messages, "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p } response = requests.post(API_URL, headers=headers, json=data) if response.status_code == 200: return response.json()['choices'][0]['message']['content'] else: return f"Error: {response.status_code} - {response.text}" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are an advanced artificial intelligence system, capable of and you output a brief and to-the-point .", label="System message" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()