|
import keras |
|
from keras.models import load_model |
|
import gradio as gr |
|
import cv2 |
|
|
|
my_model = load_model('Final_Chicken_disease_model.h5', compile=True) |
|
auth_model = load_model('auth_model.h5', compile=True) |
|
name_disease = {0: 'Coccidiosis', 1: 'Healthy', 2: 'New Castle Disease', 3: 'Salmonella'} |
|
result = {0: 'Critical', 1: 'No issue', 2: 'Critical', 3: 'Critical'} |
|
recommend = {0: 'Panadol', 1: 'You have no need of Medicine', 2: 'Percetamol', 3: 'Ponston'} |
|
|
|
|
|
def predict(image): |
|
image_check = cv2.resize(image, (224, 224)) |
|
indx = auth_model.predict(image_check.reshape(1, 224, 224, 3)).argmax() |
|
if indx == 0: |
|
image = cv2.resize(image, (224, 224)) |
|
indx = my_model.predict(image.reshape(1, 224, 224, 3)).argmax() |
|
name = name_disease.get(indx) |
|
status = result.get(indx) |
|
recom = recommend.get(indx) |
|
return name, status, recom |
|
else: |
|
name = 'Unknown Image' |
|
status = 'N/A' |
|
recom = 'N/A' |
|
return name, status, recom |
|
|
|
|
|
interface = gr.Interface(fn=predict, inputs=[gr.Image(label='upload Image')], |
|
outputs=[gr.components.Textbox(label="Disease Name"), |
|
gr.components.Textbox(label="result"), |
|
gr.components.Textbox(label='Medicine Recommend')], |
|
examples=[['disease.jpg'], ['ncd.jpg']]) |
|
interface.launch(debug=True) |
|
|