experiment with app.py
Browse files
app.py
CHANGED
@@ -1,113 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard,
|
3 |
import pandas as pd
|
4 |
-
from
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
from pathlib import Path # ⬅️ for local JSON
|
7 |
|
8 |
from src.about import (
|
9 |
CITATION_BUTTON_LABEL,
|
10 |
CITATION_BUTTON_TEXT,
|
11 |
-
EVALUATION_QUEUE_TEXT,
|
12 |
INTRODUCTION_TEXT,
|
13 |
LLM_BENCHMARKS_TEXT,
|
14 |
TITLE,
|
15 |
)
|
16 |
from src.display.css_html_js import custom_css
|
17 |
-
from src.display.utils import (
|
18 |
-
BENCHMARK_COLS,
|
19 |
-
COLS,
|
20 |
-
EVAL_COLS,
|
21 |
-
EVAL_TYPES,
|
22 |
-
AutoEvalColumn,
|
23 |
-
ModelType,
|
24 |
-
fields,
|
25 |
-
WeightType,
|
26 |
-
Precision
|
27 |
-
)
|
28 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
29 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
30 |
-
from src.submission.submit import add_new_eval
|
31 |
-
|
32 |
|
33 |
-
def restart_space():
|
34 |
-
API.restart_space(repo_id=REPO_ID)
|
35 |
-
|
36 |
-
### Space initialisation (pull queue/results datasets like before)
|
37 |
-
try:
|
38 |
-
print(EVAL_REQUESTS_PATH)
|
39 |
-
snapshot_download(
|
40 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
41 |
-
)
|
42 |
-
except Exception:
|
43 |
-
restart_space()
|
44 |
-
try:
|
45 |
-
print(EVAL_RESULTS_PATH)
|
46 |
-
snapshot_download(
|
47 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
48 |
-
)
|
49 |
-
except Exception:
|
50 |
-
restart_space()
|
51 |
-
|
52 |
-
# Original leaderboard (unchanged)
|
53 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
54 |
-
|
55 |
-
(
|
56 |
-
finished_eval_queue_df,
|
57 |
-
running_eval_queue_df,
|
58 |
-
pending_eval_queue_df,
|
59 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
60 |
-
|
61 |
-
def init_leaderboard(dataframe):
|
62 |
-
if dataframe is None or dataframe.empty:
|
63 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
64 |
-
return Leaderboard(
|
65 |
-
value=dataframe,
|
66 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
67 |
-
select_columns=SelectColumns(
|
68 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
69 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
70 |
-
label="Select Columns to Display:",
|
71 |
-
),
|
72 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
73 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
74 |
-
filter_columns=[
|
75 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
76 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
77 |
-
ColumnFilter(
|
78 |
-
AutoEvalColumn.params.name,
|
79 |
-
type="slider",
|
80 |
-
min=0.01,
|
81 |
-
max=150,
|
82 |
-
label="Select the number of parameters (B)",
|
83 |
-
),
|
84 |
-
ColumnFilter(
|
85 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
86 |
-
),
|
87 |
-
],
|
88 |
-
bool_checkboxgroup_label="Hide models",
|
89 |
-
interactive=False,
|
90 |
-
)
|
91 |
|
92 |
# -----------------------------
|
93 |
-
#
|
94 |
# -----------------------------
|
95 |
USER_JSON = Path(__file__).parent / "leaderboard_data.json"
|
96 |
try:
|
97 |
USER_DF = pd.read_json(USER_JSON)
|
98 |
-
except Exception
|
99 |
-
#
|
100 |
-
USER_DF = pd.DataFrame(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
# Ensure types (Model=str, others=float)
|
103 |
if "Model" in USER_DF.columns:
|
104 |
USER_DF["Model"] = USER_DF["Model"].astype(str)
|
105 |
for col in USER_DF.columns:
|
106 |
if col != "Model":
|
107 |
USER_DF[col] = pd.to_numeric(USER_DF[col], errors="coerce")
|
108 |
|
|
|
109 |
def init_simple_leaderboard(df: pd.DataFrame):
|
110 |
-
# Show Model + up to
|
111 |
metrics = [c for c in df.columns if c != "Model"]
|
112 |
default_cols = ["Model"] + metrics[:6] if "Model" in df.columns else list(df.columns)[:7]
|
113 |
cant_hide = ["Model"] if "Model" in df.columns else []
|
@@ -120,11 +54,12 @@ def init_simple_leaderboard(df: pd.DataFrame):
|
|
120 |
label="Select Columns to Display:",
|
121 |
),
|
122 |
search_columns=["Model"] if "Model" in df.columns else [],
|
123 |
-
hide_columns=[],
|
124 |
-
filter_columns=[],
|
125 |
interactive=False,
|
126 |
)
|
127 |
|
|
|
128 |
# -----------------------------
|
129 |
# UI
|
130 |
# -----------------------------
|
@@ -133,107 +68,16 @@ with demo:
|
|
133 |
gr.HTML(TITLE)
|
134 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
135 |
|
136 |
-
with gr.Tabs(elem_classes="tab-buttons")
|
137 |
-
with gr.TabItem("
|
138 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
139 |
-
|
140 |
-
# NEW TAB: renders your leaderboard_data.json
|
141 |
-
with gr.TabItem("📊 INTIMA Leaderboard", elem_id="intima-leaderboard-tab", id=1):
|
142 |
_ = init_simple_leaderboard(USER_DF)
|
143 |
|
144 |
-
with gr.TabItem("📝 About", elem_id="
|
145 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
146 |
|
147 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
148 |
-
with gr.Column():
|
149 |
-
with gr.Row():
|
150 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
151 |
-
|
152 |
-
with gr.Column():
|
153 |
-
with gr.Accordion(
|
154 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
155 |
-
open=False,
|
156 |
-
):
|
157 |
-
with gr.Row():
|
158 |
-
finished_eval_table = gr.components.Dataframe(
|
159 |
-
value=finished_eval_queue_df,
|
160 |
-
headers=EVAL_COLS,
|
161 |
-
datatype=EVAL_TYPES,
|
162 |
-
row_count=5,
|
163 |
-
)
|
164 |
-
with gr.Accordion(
|
165 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
166 |
-
open=False,
|
167 |
-
):
|
168 |
-
with gr.Row():
|
169 |
-
running_eval_table = gr.components.Dataframe(
|
170 |
-
value=running_eval_queue_df,
|
171 |
-
headers=EVAL_COLS,
|
172 |
-
datatype=EVAL_TYPES,
|
173 |
-
row_count=5,
|
174 |
-
)
|
175 |
-
|
176 |
-
with gr.Accordion(
|
177 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
178 |
-
open=False,
|
179 |
-
):
|
180 |
-
with gr.Row():
|
181 |
-
pending_eval_table = gr.components.Dataframe(
|
182 |
-
value=pending_eval_queue_df,
|
183 |
-
headers=EVAL_COLS,
|
184 |
-
datatype=EVAL_TYPES,
|
185 |
-
row_count=5,
|
186 |
-
)
|
187 |
-
with gr.Row():
|
188 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
189 |
-
|
190 |
-
with gr.Row():
|
191 |
-
with gr.Column():
|
192 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
193 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
194 |
-
model_type = gr.Dropdown(
|
195 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
196 |
-
label="Model type",
|
197 |
-
multiselect=False,
|
198 |
-
value=None,
|
199 |
-
interactive=True,
|
200 |
-
)
|
201 |
-
|
202 |
-
with gr.Column():
|
203 |
-
precision = gr.Dropdown(
|
204 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
205 |
-
label="Precision",
|
206 |
-
multiselect=False,
|
207 |
-
value="float16",
|
208 |
-
interactive=True,
|
209 |
-
)
|
210 |
-
weight_type = gr.Dropdown(
|
211 |
-
choices=[i.value.name for i in WeightType],
|
212 |
-
label="Weights type",
|
213 |
-
multiselect=False,
|
214 |
-
value="Original",
|
215 |
-
interactive=True,
|
216 |
-
)
|
217 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
218 |
-
|
219 |
-
submit_button = gr.Button("Submit Eval")
|
220 |
-
submission_result = gr.Markdown()
|
221 |
-
submit_button.click(
|
222 |
-
add_new_eval,
|
223 |
-
[
|
224 |
-
model_name_textbox,
|
225 |
-
base_model_name_textbox,
|
226 |
-
revision_name_textbox,
|
227 |
-
precision,
|
228 |
-
weight_type,
|
229 |
-
model_type,
|
230 |
-
],
|
231 |
-
submission_result,
|
232 |
-
)
|
233 |
-
|
234 |
with gr.Row():
|
235 |
with gr.Accordion("📙 Citation", open=False):
|
236 |
-
|
237 |
value=CITATION_BUTTON_TEXT,
|
238 |
label=CITATION_BUTTON_LABEL,
|
239 |
lines=20,
|
@@ -241,7 +85,5 @@ with demo:
|
|
241 |
show_copy_button=True,
|
242 |
)
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
scheduler.start()
|
247 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, SelectColumns
|
3 |
import pandas as pd
|
4 |
+
from pathlib import Path
|
|
|
|
|
5 |
|
6 |
from src.about import (
|
7 |
CITATION_BUTTON_LABEL,
|
8 |
CITATION_BUTTON_TEXT,
|
|
|
9 |
INTRODUCTION_TEXT,
|
10 |
LLM_BENCHMARKS_TEXT,
|
11 |
TITLE,
|
12 |
)
|
13 |
from src.display.css_html_js import custom_css
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# -----------------------------
|
17 |
+
# Load your local JSON
|
18 |
# -----------------------------
|
19 |
USER_JSON = Path(__file__).parent / "leaderboard_data.json"
|
20 |
try:
|
21 |
USER_DF = pd.read_json(USER_JSON)
|
22 |
+
except Exception:
|
23 |
+
# Build with an empty frame if file missing so the Space still loads
|
24 |
+
USER_DF = pd.DataFrame(
|
25 |
+
columns=[
|
26 |
+
"Model",
|
27 |
+
"Average",
|
28 |
+
"Assistant Traits",
|
29 |
+
"Relationship & Intimacy",
|
30 |
+
"Emotional Investment",
|
31 |
+
"User Vulnerabilities",
|
32 |
+
]
|
33 |
+
)
|
34 |
|
35 |
+
# Ensure types (Model=str, others=float)
|
36 |
if "Model" in USER_DF.columns:
|
37 |
USER_DF["Model"] = USER_DF["Model"].astype(str)
|
38 |
for col in USER_DF.columns:
|
39 |
if col != "Model":
|
40 |
USER_DF[col] = pd.to_numeric(USER_DF[col], errors="coerce")
|
41 |
|
42 |
+
|
43 |
def init_simple_leaderboard(df: pd.DataFrame):
|
44 |
+
# Show Model + up to 6 metrics by default
|
45 |
metrics = [c for c in df.columns if c != "Model"]
|
46 |
default_cols = ["Model"] + metrics[:6] if "Model" in df.columns else list(df.columns)[:7]
|
47 |
cant_hide = ["Model"] if "Model" in df.columns else []
|
|
|
54 |
label="Select Columns to Display:",
|
55 |
),
|
56 |
search_columns=["Model"] if "Model" in df.columns else [],
|
57 |
+
hide_columns=[], # keep everything visible
|
58 |
+
filter_columns=[], # add later if you introduce typed columns to filter on
|
59 |
interactive=False,
|
60 |
)
|
61 |
|
62 |
+
|
63 |
# -----------------------------
|
64 |
# UI
|
65 |
# -----------------------------
|
|
|
68 |
gr.HTML(TITLE)
|
69 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
70 |
|
71 |
+
with gr.Tabs(elem_classes="tab-buttons"):
|
72 |
+
with gr.TabItem("📊 INTIMA Leaderboard", elem_id="intima-leaderboard-tab", id=0):
|
|
|
|
|
|
|
|
|
73 |
_ = init_simple_leaderboard(USER_DF)
|
74 |
|
75 |
+
with gr.TabItem("📝 About", elem_id="about-tab", id=1):
|
76 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Row():
|
79 |
with gr.Accordion("📙 Citation", open=False):
|
80 |
+
gr.Textbox(
|
81 |
value=CITATION_BUTTON_TEXT,
|
82 |
label=CITATION_BUTTON_LABEL,
|
83 |
lines=20,
|
|
|
85 |
show_copy_button=True,
|
86 |
)
|
87 |
|
88 |
+
if __name__ == "__main__":
|
89 |
+
demo.launch()
|
|
|
|