experiment with app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,247 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard,
|
3 |
-
from pathlib import Path
|
4 |
import pandas as pd
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
with gr.Blocks() as demo:
|
10 |
-
gr.Markdown("# π Model Leaderboard")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
select_columns=SelectColumns(
|
16 |
-
default_selection=[
|
17 |
-
cant_deselect=[
|
18 |
-
label="Select
|
19 |
),
|
20 |
-
|
21 |
-
|
22 |
-
# hide helper columns that are only for search/filtering
|
23 |
-
hide_columns=["model_name_for_query"],
|
24 |
-
# add quick filters; auto-picks widget types unless you specify
|
25 |
filter_columns=[
|
26 |
-
"
|
27 |
-
ColumnFilter("
|
28 |
-
ColumnFilter(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
],
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
|
|
3 |
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from pathlib import Path # β¬
οΈ for local JSON
|
7 |
|
8 |
+
from src.about import (
|
9 |
+
CITATION_BUTTON_LABEL,
|
10 |
+
CITATION_BUTTON_TEXT,
|
11 |
+
EVALUATION_QUEUE_TEXT,
|
12 |
+
INTRODUCTION_TEXT,
|
13 |
+
LLM_BENCHMARKS_TEXT,
|
14 |
+
TITLE,
|
15 |
+
)
|
16 |
+
from src.display.css_html_js import custom_css
|
17 |
+
from src.display.utils import (
|
18 |
+
BENCHMARK_COLS,
|
19 |
+
COLS,
|
20 |
+
EVAL_COLS,
|
21 |
+
EVAL_TYPES,
|
22 |
+
AutoEvalColumn,
|
23 |
+
ModelType,
|
24 |
+
fields,
|
25 |
+
WeightType,
|
26 |
+
Precision
|
27 |
+
)
|
28 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
29 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
30 |
+
from src.submission.submit import add_new_eval
|
31 |
|
|
|
|
|
32 |
|
33 |
+
def restart_space():
|
34 |
+
API.restart_space(repo_id=REPO_ID)
|
35 |
+
|
36 |
+
### Space initialisation (pull queue/results datasets like before)
|
37 |
+
try:
|
38 |
+
print(EVAL_REQUESTS_PATH)
|
39 |
+
snapshot_download(
|
40 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
41 |
+
)
|
42 |
+
except Exception:
|
43 |
+
restart_space()
|
44 |
+
try:
|
45 |
+
print(EVAL_RESULTS_PATH)
|
46 |
+
snapshot_download(
|
47 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
48 |
+
)
|
49 |
+
except Exception:
|
50 |
+
restart_space()
|
51 |
+
|
52 |
+
# Original leaderboard (unchanged)
|
53 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
54 |
+
|
55 |
+
(
|
56 |
+
finished_eval_queue_df,
|
57 |
+
running_eval_queue_df,
|
58 |
+
pending_eval_queue_df,
|
59 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
60 |
+
|
61 |
+
def init_leaderboard(dataframe):
|
62 |
+
if dataframe is None or dataframe.empty:
|
63 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
64 |
+
return Leaderboard(
|
65 |
+
value=dataframe,
|
66 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
67 |
select_columns=SelectColumns(
|
68 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
69 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
70 |
+
label="Select Columns to Display:",
|
71 |
),
|
72 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
73 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
|
|
|
|
|
|
74 |
filter_columns=[
|
75 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
76 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
77 |
+
ColumnFilter(
|
78 |
+
AutoEvalColumn.params.name,
|
79 |
+
type="slider",
|
80 |
+
min=0.01,
|
81 |
+
max=150,
|
82 |
+
label="Select the number of parameters (B)",
|
83 |
+
),
|
84 |
+
ColumnFilter(
|
85 |
+
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
86 |
+
),
|
87 |
],
|
88 |
+
bool_checkboxgroup_label="Hide models",
|
89 |
+
interactive=False,
|
90 |
+
)
|
91 |
+
|
92 |
+
# -----------------------------
|
93 |
+
# NEW: Load your local JSON and a simple leaderboard (no AutoEvalColumn coupling)
|
94 |
+
# -----------------------------
|
95 |
+
USER_JSON = Path(__file__).parent / "leaderboard_data.json"
|
96 |
+
try:
|
97 |
+
USER_DF = pd.read_json(USER_JSON)
|
98 |
+
except Exception as e:
|
99 |
+
# Create an empty DF with the expected columns if file missing, so Space still builds.
|
100 |
+
USER_DF = pd.DataFrame(columns=["Model", "Average", "Assistant Traits", "Relationship & Intimacy", "Emotional Investment", "User Vulnerabilities"])
|
101 |
+
|
102 |
+
# Ensure types (Model=str, others=float) and clean column order
|
103 |
+
if "Model" in USER_DF.columns:
|
104 |
+
USER_DF["Model"] = USER_DF["Model"].astype(str)
|
105 |
+
for col in USER_DF.columns:
|
106 |
+
if col != "Model":
|
107 |
+
USER_DF[col] = pd.to_numeric(USER_DF[col], errors="coerce")
|
108 |
+
|
109 |
+
def init_simple_leaderboard(df: pd.DataFrame):
|
110 |
+
# Show Model + up to first 6 metric columns by default
|
111 |
+
metrics = [c for c in df.columns if c != "Model"]
|
112 |
+
default_cols = ["Model"] + metrics[:6] if "Model" in df.columns else list(df.columns)[:7]
|
113 |
+
cant_hide = ["Model"] if "Model" in df.columns else []
|
114 |
+
|
115 |
+
return Leaderboard(
|
116 |
+
value=df,
|
117 |
+
select_columns=SelectColumns(
|
118 |
+
default_selection=default_cols if default_cols else list(df.columns),
|
119 |
+
cant_deselect=cant_hide,
|
120 |
+
label="Select Columns to Display:",
|
121 |
+
),
|
122 |
+
search_columns=["Model"] if "Model" in df.columns else [],
|
123 |
+
hide_columns=[], # keep everything visible
|
124 |
+
filter_columns=[], # no filters for now
|
125 |
+
interactive=False,
|
126 |
)
|
127 |
|
128 |
+
# -----------------------------
|
129 |
+
# UI
|
130 |
+
# -----------------------------
|
131 |
+
demo = gr.Blocks(css=custom_css)
|
132 |
+
with demo:
|
133 |
+
gr.HTML(TITLE)
|
134 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
135 |
+
|
136 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
137 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
138 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
139 |
+
|
140 |
+
# NEW TAB: renders your leaderboard_data.json
|
141 |
+
with gr.TabItem("π INTIMA Leaderboard", elem_id="intima-leaderboard-tab", id=1):
|
142 |
+
_ = init_simple_leaderboard(USER_DF)
|
143 |
+
|
144 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
145 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
146 |
+
|
147 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
148 |
+
with gr.Column():
|
149 |
+
with gr.Row():
|
150 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
151 |
+
|
152 |
+
with gr.Column():
|
153 |
+
with gr.Accordion(
|
154 |
+
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
155 |
+
open=False,
|
156 |
+
):
|
157 |
+
with gr.Row():
|
158 |
+
finished_eval_table = gr.components.Dataframe(
|
159 |
+
value=finished_eval_queue_df,
|
160 |
+
headers=EVAL_COLS,
|
161 |
+
datatype=EVAL_TYPES,
|
162 |
+
row_count=5,
|
163 |
+
)
|
164 |
+
with gr.Accordion(
|
165 |
+
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
166 |
+
open=False,
|
167 |
+
):
|
168 |
+
with gr.Row():
|
169 |
+
running_eval_table = gr.components.Dataframe(
|
170 |
+
value=running_eval_queue_df,
|
171 |
+
headers=EVAL_COLS,
|
172 |
+
datatype=EVAL_TYPES,
|
173 |
+
row_count=5,
|
174 |
+
)
|
175 |
+
|
176 |
+
with gr.Accordion(
|
177 |
+
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
178 |
+
open=False,
|
179 |
+
):
|
180 |
+
with gr.Row():
|
181 |
+
pending_eval_table = gr.components.Dataframe(
|
182 |
+
value=pending_eval_queue_df,
|
183 |
+
headers=EVAL_COLS,
|
184 |
+
datatype=EVAL_TYPES,
|
185 |
+
row_count=5,
|
186 |
+
)
|
187 |
+
with gr.Row():
|
188 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column():
|
192 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
193 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
194 |
+
model_type = gr.Dropdown(
|
195 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
196 |
+
label="Model type",
|
197 |
+
multiselect=False,
|
198 |
+
value=None,
|
199 |
+
interactive=True,
|
200 |
+
)
|
201 |
+
|
202 |
+
with gr.Column():
|
203 |
+
precision = gr.Dropdown(
|
204 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
205 |
+
label="Precision",
|
206 |
+
multiselect=False,
|
207 |
+
value="float16",
|
208 |
+
interactive=True,
|
209 |
+
)
|
210 |
+
weight_type = gr.Dropdown(
|
211 |
+
choices=[i.value.name for i in WeightType],
|
212 |
+
label="Weights type",
|
213 |
+
multiselect=False,
|
214 |
+
value="Original",
|
215 |
+
interactive=True,
|
216 |
+
)
|
217 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
218 |
+
|
219 |
+
submit_button = gr.Button("Submit Eval")
|
220 |
+
submission_result = gr.Markdown()
|
221 |
+
submit_button.click(
|
222 |
+
add_new_eval,
|
223 |
+
[
|
224 |
+
model_name_textbox,
|
225 |
+
base_model_name_textbox,
|
226 |
+
revision_name_textbox,
|
227 |
+
precision,
|
228 |
+
weight_type,
|
229 |
+
model_type,
|
230 |
+
],
|
231 |
+
submission_result,
|
232 |
+
)
|
233 |
+
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Accordion("π Citation", open=False):
|
236 |
+
citation_button = gr.Textbox(
|
237 |
+
value=CITATION_BUTTON_TEXT,
|
238 |
+
label=CITATION_BUTTON_LABEL,
|
239 |
+
lines=20,
|
240 |
+
elem_id="citation-button",
|
241 |
+
show_copy_button=True,
|
242 |
+
)
|
243 |
+
|
244 |
+
scheduler = BackgroundScheduler()
|
245 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
246 |
+
scheduler.start()
|
247 |
+
demo.queue(default_concurrency_limit=40).launch()
|