File size: 12,338 Bytes
afe1a07
 
 
 
 
 
 
b300542
afe1a07
 
 
6a91f5a
e39e85d
afe1a07
89589a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dacaeb
e39e85d
0dacaeb
 
 
 
 
c4fb7a3
 
 
0dacaeb
 
 
 
 
 
 
c5125f1
 
 
 
 
0dacaeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39e85d
0dacaeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89589a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dacaeb
89589a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe1a07
 
 
89589a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe1a07
6a91f5a
c5125f1
 
 
 
 
c4fb7a3
 
 
6a91f5a
 
 
 
368ac79
 
6a91f5a
 
771145b
6a91f5a
c4fb7a3
afe1a07
357478d
20d68fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import torch
import gradio as gr
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from scipy.io import wavfile
import glob
import random
import numpy as np
import re
import requests
import time

# Import necessary functions and classes
from utils import load_t5, load_clap
from train import RF
from constants import build_model

# Global variables to store loaded models and resources
global_model = None
global_t5 = None
global_clap = None
global_vae = None
global_vocoder = None
global_diffusion = None
current_model_name = None

# Set the models directory
MODELS_DIR = os.path.join(os.path.dirname(__file__), "models")
GENERATIONS_DIR = os.path.join(os.path.dirname(__file__), "generations")

def prepare(t5, clip, img, prompt):
    bs, c, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    if isinstance(prompt, str):
        prompt = [prompt]
    
    # Generate text embeddings
    txt = t5(prompt)
    
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)

    return img, {
        "img_ids": img_ids.to(img.device),
        "txt": txt.to(img.device),
        "txt_ids": txt_ids.to(img.device),
        "y": vec.to(img.device),
    }

def unload_current_model():
    global global_model, current_model_name
    if global_model is not None:
        del global_model
        torch.cuda.empty_cache()
        global_model = None
    current_model_name = None

def load_model(model_name, device, model_url=None):
    global global_model, current_model_name
    
    unload_current_model()
    
    if model_url:
        print(f"Downloading model from URL: {model_url}")
        response = requests.get(model_url)
        if response.status_code == 200:
            model_path = os.path.join(MODELS_DIR, "downloaded_model.pt")
            with open(model_path, 'wb') as f:
                f.write(response.content)
            model_name = "downloaded_model.pt"
        else:
            return f"Failed to download model from URL: {model_url}"
    else:
        model_path = os.path.join(MODELS_DIR, model_name)
    
    if not os.path.exists(model_path):
        return f"Model file not found: {model_path}"
    
    # Determine model size from filename
    if 'musicflow_b' in model_name:
        model_size = "base"
    elif 'musicflow_g' in model_name:
        model_size = "giant"
    elif 'musicflow_l' in model_name:
        model_size = "large"
    elif 'musicflow_s' in model_name:
        model_size = "small"
    else:
        model_size = "base"  # Default to base if unrecognized
    
    print(f"Loading {model_size} model: {model_name}")
    
    try:
        start_time = time.time()
        global_model = build_model(model_size).to(device)
        state_dict = torch.load(model_path, map_location=device, weights_only=True)
        global_model.load_state_dict(state_dict['ema'], strict=False)
        global_model.eval()
        
        global_model.model_path = model_path
        current_model_name = model_name
        end_time = time.time()
        load_time = end_time - start_time
        return f"Successfully loaded model: {model_name} in {load_time:.2f} seconds"
    except Exception as e:
        global_model = None
        current_model_name = None
        print(f"Error loading model {model_name}: {str(e)}")
        return f"Failed to load model: {model_name}. Error: {str(e)}"

def load_resources(device):
    global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
    
    try:
        start_time = time.time()
        print("Loading T5 and CLAP models...")
        global_t5 = load_t5(device, max_length=256)
        global_clap = load_clap(device, max_length=256)
        
        print("Loading VAE and vocoder...")
        global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
        global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
        
        print("Initializing diffusion...")
        global_diffusion = RF()
        
        end_time = time.time()
        load_time = end_time - start_time
        print(f"Base resources loaded successfully in {load_time:.2f} seconds!")
        return f"Resources loaded successfully in {load_time:.2f} seconds!"
    except Exception as e:
        print(f"Error loading resources: {str(e)}")
        return f"Failed to load resources. Error: {str(e)}"

def generate_music(prompt, seed, cfg_scale, steps, duration, device, batch_size=1, progress=gr.Progress()):
    global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
    
    if global_model is None:
        return "Please select and load a model first.", None
    
    if global_t5 is None or global_clap is None or global_vae is None or global_vocoder is None or global_diffusion is None:
        return "Resources not properly loaded. Please reload the page and try again.", None
    
    if seed == 0:
        seed = random.randint(1, 1000000)
    print(f"Using seed: {seed}")
    
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)

    # Ensure we're using CPU if CUDA is not available
    if device == "cuda" and not torch.cuda.is_available():
        print("CUDA is not available. Falling back to CPU.")
        device = "cpu"

    # Calculate the number of segments needed for the desired duration
    segment_duration = 10  # Each segment is 10 seconds
    num_segments = int(np.ceil(duration / segment_duration))

    all_waveforms = []

    for i in range(num_segments):
        progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")

        # Use the same seed for all segments
        torch.manual_seed(seed + i)  # Add i to slightly vary each segment while maintaining consistency

        latent_size = (256, 16)
        conds_txt = [prompt]
        unconds_txt = ["low quality, gentle"]
        L = len(conds_txt)

        init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)

        img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
        _, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)

        # Implement batching for inference
        images = []
        for batch_start in range(0, img.shape[0], batch_size):
            batch_end = min(batch_start + batch_size, img.shape[0])
            batch_img = img[batch_start:batch_end]
            batch_conds = {k: v[batch_start:batch_end] for k, v in conds.items()}
            batch_unconds = {k: v[batch_start:batch_end] for k, v in unconds.items()}
            
            with torch.no_grad():
                batch_images = global_diffusion.sample_with_xps(
                    global_model, batch_img, conds=batch_conds, null_cond=batch_unconds, 
                    sample_steps=steps, cfg=cfg_scale
                )
            images.append(batch_images[-1])
        
        images = torch.cat(images, dim=0)

        images = rearrange(
            images,
            "b (h w) (c ph pw) -> b c (h ph) (w pw)",
            h=128,
            w=8,
            ph=2,
            pw=2,)

        latents = 1 / global_vae.config.scaling_factor * images
        mel_spectrogram = global_vae.decode(latents).sample

        x_i = mel_spectrogram[0]
        if x_i.dim() == 4:
            x_i = x_i.squeeze(1)
        waveform = global_vocoder(x_i)
        waveform = waveform[0].cpu().float().detach().numpy()

        all_waveforms.append(waveform)

    # Concatenate all waveforms
    final_waveform = np.concatenate(all_waveforms)

    # Trim to exact duration
    sample_rate = 16000
    final_waveform = final_waveform[:int(duration * sample_rate)]

    progress(0.9, desc="Saving audio file")
    
    # Create 'generations' folder
    os.makedirs(GENERATIONS_DIR, exist_ok=True)

    # Generate filename
    prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
    model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
    model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
    base_filename = f"{prompt_part}_{seed}{model_suffix}"
    output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
    
    # Check if file exists and add numerical suffix if needed
    counter = 1
    while os.path.exists(output_path):
        output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
        counter += 1

    wavfile.write(output_path, sample_rate, final_waveform)

    progress(1.0, desc="Audio generation complete")
    return f"Generated with seed: {seed}", output_path

# Get list of .pt files in the models directory
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
model_choices = [os.path.basename(f) for f in model_files]

# Ensure we have at least one model
if not model_choices:
    print(f"No models found in the models directory: {MODELS_DIR}")
    print("Available files in the directory:")
    print(os.listdir(MODELS_DIR))
    model_choices = ["No models available"]

# Set default model
default_model = 'musicflow_b.pt' if 'musicflow_b.pt' in model_choices else model_choices[0]

# Set up dark grey theme
theme = gr.themes.Monochrome(
    primary_hue="gray",
    secondary_hue="gray",
    neutral_hue="gray",
    radius_size=gr.themes.sizes.radius_sm,
)

# Gradio Interface
with gr.Blocks(theme=theme) as iface:
    gr.Markdown(
        """
        <div style="text-align: center;">
            <h1>FluxMusic Generator</h1>
            <p>Generate music based on text prompts using FluxMusic model.</p>
            <p>Feel free to clone this space and run on GPU locally or on Hugging Face.</p>
        </div>
        """)
    
    with gr.Row():
        model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model)
        model_url = gr.Textbox(label="Or enter model URL")
        device_choice = gr.Radio(["cpu", "cuda"], label="Device", value="cpu")
        load_model_button = gr.Button("Load Model")
        model_status = gr.Textbox(label="Model Status", value="No model loaded")
    
    with gr.Row():
        prompt = gr.Textbox(label="Prompt")
        seed = gr.Number(label="Seed", value=0)
    
    with gr.Row():
        cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
        steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
        duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
    
    generate_button = gr.Button("Generate Music")
    output_status = gr.Textbox(label="Generation Status")
    output_audio = gr.Audio(type="filepath")

    def on_load_model_click(model_name, device, url):
        # Ensure we're using CPU if CUDA is not available
        if device == "cuda" and not torch.cuda.is_available():
            print("CUDA is not available. Falling back to CPU.")
            device = "cpu"
        
        resource_status = load_resources(device)
        if "Failed" in resource_status:
            return resource_status
        if url:
            result = load_model(None, device, model_url=url)
        else:
            result = load_model(model_name, device)
        return result

    load_model_button.click(on_load_model_click, inputs=[model_dropdown, device_choice, model_url], outputs=[model_status])
    generate_button.click(generate_music, inputs=[prompt, seed, cfg_scale, steps, duration, device_choice], outputs=[output_status, output_audio])

    # Load default model and resources on startup
    iface.load(lambda: on_load_model_click(default_model, "cpu", None), inputs=None, outputs=None)

# Launch the interface
iface.launch()