Spaces:
Runtime error
Runtime error
Trent
commited on
Commit
·
31f3439
1
Parent(s):
6e03e5d
List model loading support
Browse files- app.py +3 -3
- backend/config.py +2 -0
- backend/inference.py +9 -4
- backend/utils.py +5 -5
app.py
CHANGED
@@ -36,7 +36,7 @@ if menu == "Sentence Similarity":
|
|
36 |
|
37 |
inputs = []
|
38 |
|
39 |
-
for i in range(n_texts):
|
40 |
input = st.text_input(f'Text {i + 1}:')
|
41 |
|
42 |
inputs.append(input)
|
@@ -45,7 +45,7 @@ if menu == "Sentence Similarity":
|
|
45 |
results = {model: inference.text_similarity(anchor, inputs, model) for model in select_models}
|
46 |
df_results = {model: results[model] for model in results}
|
47 |
|
48 |
-
index = inputs
|
49 |
df_total = pd.DataFrame(index=index)
|
50 |
for key, value in df_results.items():
|
51 |
df_total[key] = list(value['score'].values)
|
@@ -53,7 +53,7 @@ if menu == "Sentence Similarity":
|
|
53 |
st.write('Here are the results for selected models:')
|
54 |
st.write(df_total)
|
55 |
st.write('Visualize the results of each model:')
|
56 |
-
st.
|
57 |
elif menu == "Search":
|
58 |
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
|
59 |
|
|
|
36 |
|
37 |
inputs = []
|
38 |
|
39 |
+
for i in range(int(n_texts)):
|
40 |
input = st.text_input(f'Text {i + 1}:')
|
41 |
|
42 |
inputs.append(input)
|
|
|
45 |
results = {model: inference.text_similarity(anchor, inputs, model) for model in select_models}
|
46 |
df_results = {model: results[model] for model in results}
|
47 |
|
48 |
+
index = [f"{idx}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
|
49 |
df_total = pd.DataFrame(index=index)
|
50 |
for key, value in df_results.items():
|
51 |
df_total[key] = list(value['score'].values)
|
|
|
53 |
st.write('Here are the results for selected models:')
|
54 |
st.write(df_total)
|
55 |
st.write('Visualize the results of each model:')
|
56 |
+
st.line_chart(df_total)
|
57 |
elif menu == "Search":
|
58 |
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
|
59 |
|
backend/config.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
MODELS_ID = dict(distilroberta = 'flax-sentence-embeddings/st-codesearch-distilroberta-base',
|
2 |
mpnet = 'flax-sentence-embeddings/all_datasets_v3_mpnet-base',
|
3 |
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
|
|
|
|
4 |
minilm_l6 = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L6')
|
5 |
|
6 |
QA_MODELS_ID = dict(
|
|
|
1 |
MODELS_ID = dict(distilroberta = 'flax-sentence-embeddings/st-codesearch-distilroberta-base',
|
2 |
mpnet = 'flax-sentence-embeddings/all_datasets_v3_mpnet-base',
|
3 |
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
4 |
+
mpnet_asymmetric_qa = ['flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q',
|
5 |
+
'flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A'],
|
6 |
minilm_l6 = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L6')
|
7 |
|
8 |
QA_MODELS_ID = dict(
|
backend/inference.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import pandas as pd
|
2 |
import jax.numpy as jnp
|
3 |
|
4 |
-
from typing import List
|
5 |
|
6 |
# Defining cosine similarity using flax.
|
7 |
from backend.utils import load_model
|
@@ -13,12 +13,17 @@ def cos_sim(a, b):
|
|
13 |
|
14 |
# We get similarity between embeddings.
|
15 |
def text_similarity(anchor: str, inputs: List[str], model_name: str):
|
|
|
16 |
model = load_model(model_name)
|
17 |
-
assert hasattr(model, 'encode') # multiple models is not supported for similarity
|
18 |
|
19 |
# Creating embeddings
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Obtaining similarity
|
24 |
similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb)))
|
|
|
1 |
import pandas as pd
|
2 |
import jax.numpy as jnp
|
3 |
|
4 |
+
from typing import List, Union
|
5 |
|
6 |
# Defining cosine similarity using flax.
|
7 |
from backend.utils import load_model
|
|
|
13 |
|
14 |
# We get similarity between embeddings.
|
15 |
def text_similarity(anchor: str, inputs: List[str], model_name: str):
|
16 |
+
print(model_name)
|
17 |
model = load_model(model_name)
|
|
|
18 |
|
19 |
# Creating embeddings
|
20 |
+
if hasattr(model, 'encode'):
|
21 |
+
anchor_emb = model.encode(anchor)[None, :]
|
22 |
+
inputs_emb = model.encode([input for input in inputs])
|
23 |
+
else:
|
24 |
+
assert len(model) == 2
|
25 |
+
anchor_emb = model[0].encode(anchor)[None, :]
|
26 |
+
inputs_emb = model[1].encode([input for input in inputs])
|
27 |
|
28 |
# Obtaining similarity
|
29 |
similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb)))
|
backend/utils.py
CHANGED
@@ -7,10 +7,10 @@ from .config import MODELS_ID
|
|
7 |
def load_model(model_name):
|
8 |
assert model_name in MODELS_ID.keys()
|
9 |
# Lazy downloading
|
10 |
-
|
11 |
-
if
|
12 |
-
output = SentenceTransformer(
|
13 |
-
elif hasattr(
|
14 |
-
output = [SentenceTransformer(
|
15 |
|
16 |
return output
|
|
|
7 |
def load_model(model_name):
|
8 |
assert model_name in MODELS_ID.keys()
|
9 |
# Lazy downloading
|
10 |
+
model_ids = MODELS_ID[model_name]
|
11 |
+
if type(model_ids) == str:
|
12 |
+
output = SentenceTransformer(model_ids)
|
13 |
+
elif hasattr(model_ids, '__iter__'):
|
14 |
+
output = [SentenceTransformer(name) for name in model_ids]
|
15 |
|
16 |
return output
|