Spaces:
Runtime error
Runtime error
Trent
commited on
Commit
·
6e03e5d
1
Parent(s):
4117251
Navigation
Browse files- app.py +31 -24
- backend/config.py +6 -0
- backend/inference.py +1 -0
- backend/utils.py +7 -2
app.py
CHANGED
@@ -6,7 +6,8 @@ from backend.config import MODELS_ID
|
|
6 |
|
7 |
st.title('Demo using Flax-Sentence-Tranformers')
|
8 |
|
9 |
-
st.sidebar.title('')
|
|
|
10 |
|
11 |
st.markdown('''
|
12 |
|
@@ -21,34 +22,40 @@ For more cool information on sentence embeddings, see the [sBert project](https:
|
|
21 |
Please enjoy!!
|
22 |
''')
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
anchor = st.text_input(
|
27 |
-
|
28 |
-
)
|
29 |
|
30 |
-
n_texts = st.number_input(
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
inputs = []
|
36 |
|
37 |
-
for i in range(n_texts):
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
if st.button('Tell me the similarity.'):
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
st.title('Demo using Flax-Sentence-Tranformers')
|
8 |
|
9 |
+
st.sidebar.title('Tasks')
|
10 |
+
menu = st.sidebar.radio("", options=["Sentence Similarity", "Search", "Clustering"], index=0)
|
11 |
|
12 |
st.markdown('''
|
13 |
|
|
|
22 |
Please enjoy!!
|
23 |
''')
|
24 |
|
25 |
+
if menu == "Sentence Similarity":
|
26 |
+
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
|
27 |
|
28 |
+
anchor = st.text_input(
|
29 |
+
'Please enter here the main text you want to compare:'
|
30 |
+
)
|
31 |
|
32 |
+
n_texts = st.number_input(
|
33 |
+
f'''How many texts you want to compare with: '{anchor}'?''',
|
34 |
+
value=2,
|
35 |
+
min_value=2)
|
36 |
|
37 |
+
inputs = []
|
38 |
|
39 |
+
for i in range(n_texts):
|
40 |
+
input = st.text_input(f'Text {i + 1}:')
|
41 |
|
42 |
+
inputs.append(input)
|
43 |
|
44 |
+
if st.button('Tell me the similarity.'):
|
45 |
+
results = {model: inference.text_similarity(anchor, inputs, model) for model in select_models}
|
46 |
+
df_results = {model: results[model] for model in results}
|
47 |
|
48 |
+
index = inputs
|
49 |
+
df_total = pd.DataFrame(index=index)
|
50 |
+
for key, value in df_results.items():
|
51 |
+
df_total[key] = list(value['score'].values)
|
52 |
|
53 |
+
st.write('Here are the results for selected models:')
|
54 |
+
st.write(df_total)
|
55 |
+
st.write('Visualize the results of each model:')
|
56 |
+
st.area_chart(df_total)
|
57 |
+
elif menu == "Search":
|
58 |
+
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
|
59 |
+
|
60 |
+
elif menu == "Clustering":
|
61 |
+
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
|
backend/config.py
CHANGED
@@ -2,3 +2,9 @@ MODELS_ID = dict(distilroberta = 'flax-sentence-embeddings/st-codesearch-distilr
|
|
2 |
mpnet = 'flax-sentence-embeddings/all_datasets_v3_mpnet-base',
|
3 |
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
4 |
minilm_l6 = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L6')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
mpnet = 'flax-sentence-embeddings/all_datasets_v3_mpnet-base',
|
3 |
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
4 |
minilm_l6 = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L6')
|
5 |
+
|
6 |
+
QA_MODELS_ID = dict(
|
7 |
+
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
8 |
+
mpnet_asymmetric_qa = ['flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q',
|
9 |
+
'flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A']
|
10 |
+
)
|
backend/inference.py
CHANGED
@@ -14,6 +14,7 @@ def cos_sim(a, b):
|
|
14 |
# We get similarity between embeddings.
|
15 |
def text_similarity(anchor: str, inputs: List[str], model_name: str):
|
16 |
model = load_model(model_name)
|
|
|
17 |
|
18 |
# Creating embeddings
|
19 |
anchor_emb = model.encode(anchor)[None, :]
|
|
|
14 |
# We get similarity between embeddings.
|
15 |
def text_similarity(anchor: str, inputs: List[str], model_name: str):
|
16 |
model = load_model(model_name)
|
17 |
+
assert hasattr(model, 'encode') # multiple models is not supported for similarity
|
18 |
|
19 |
# Creating embeddings
|
20 |
anchor_emb = model.encode(anchor)[None, :]
|
backend/utils.py
CHANGED
@@ -7,5 +7,10 @@ from .config import MODELS_ID
|
|
7 |
def load_model(model_name):
|
8 |
assert model_name in MODELS_ID.keys()
|
9 |
# Lazy downloading
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def load_model(model_name):
|
8 |
assert model_name in MODELS_ID.keys()
|
9 |
# Lazy downloading
|
10 |
+
models = MODELS_ID[model_name]
|
11 |
+
if models is str:
|
12 |
+
output = SentenceTransformer(models)
|
13 |
+
elif hasattr(models, '__iter__') :
|
14 |
+
output = [SentenceTransformer(model) for model in models]
|
15 |
+
|
16 |
+
return output
|