Trent commited on
Commit
15f2759
·
1 Parent(s): 0d51b77

Gender samples

Browse files
Files changed (1) hide show
  1. app.py +18 -7
app.py CHANGED
@@ -41,8 +41,8 @@ if menu == "Contributions & Evaluation":
41
  | Model | [FullEvaluation](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143) Average | 20Newsgroups Clustering | StackOverflow DupQuestions | Twitter SemEval2015 |
42
  |-----------|---------------------------------------|-------|-------|-------|
43
  | paraphrase-mpnet-base-v2 (previous SOTA) | 67.97 | 47.79 | 49.03 | 72.36 |
44
- | all_datasets_v3_roberta-large (400k steps) | **70.22** | 50.12 | 52.18 | 75.28 |
45
- | all_datasets_v3_mpnet-base (440k steps) | **70.01** | 50.22 | 52.24 | 76.27 |
46
  ''')
47
  elif menu == "Sentence Similarity":
48
  st.header('Sentence Similarity')
@@ -172,11 +172,22 @@ Hopefully the evaluation performed here can proceed towards improving Gender-neu
172
  For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
173
  ''')
174
 
175
- select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
 
 
176
 
177
- base_text = st.text_input("Gender Neutral Text", "President of the United States promised relief to Hurricane survivors.")
178
- male_text = st.text_input("Male-assumed Text", "He promised relief to Hurricane survivors.")
179
- female_text = st.text_input("Female-assumed Text", "She promised relief to Hurricane survivors.")
 
 
 
 
 
 
 
 
 
180
 
181
  enter = st.button("Compare")
182
  if enter:
@@ -188,7 +199,7 @@ For more cool information on sentence embeddings, see the [sBert project](https:
188
  softmax = [round(ts.item(), 4) for ts in torch.nn.functional.softmax(torch.from_numpy(value['score'].values))]
189
  if softmax[0] > softmax[1]:
190
  gender = "male"
191
- elif abs(softmax[0] - softmax[1]) < 1e-2:
192
  gender = "neutral"
193
  else:
194
  gender = "female"
 
41
  | Model | [FullEvaluation](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143) Average | 20Newsgroups Clustering | StackOverflow DupQuestions | Twitter SemEval2015 |
42
  |-----------|---------------------------------------|-------|-------|-------|
43
  | paraphrase-mpnet-base-v2 (previous SOTA) | 67.97 | 47.79 | 49.03 | 72.36 |
44
+ | **all_datasets_v3_roberta-large (400k steps)** | **70.22** | 50.12 | 52.18 | 75.28 |
45
+ | **all_datasets_v3_mpnet-base (440k steps)** | **70.01** | 50.22 | 52.24 | 76.27 |
46
  ''')
47
  elif menu == "Sentence Similarity":
48
  st.header('Sentence Similarity')
 
172
  For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
173
  ''')
174
 
175
+ select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID))
176
+
177
+ samples = st.radio("Samples", options=["President of United States", "Professor", "Nurse", "Custom"])
178
 
179
+ if samples == "President of United States":
180
+ base_text = st.text_input("Gender Neutral Text", "President of the United States promised relief to Hurricane survivors.")
181
+ male_text = st.text_input("Male-assumed Text", "He promised relief to Hurricane survivors.")
182
+ female_text = st.text_input("Female-assumed Text", "She promised relief to Hurricane survivors.")
183
+ elif samples == "Professor":
184
+ base_text = st.text_input("Gender Neutral Text", "Professor ended the class earlier than usual.")
185
+ male_text = st.text_input("Male-assumed Text", "He ended the class earlier than usual.")
186
+ female_text = st.text_input("Female-assumed Text", "She ended the class earlier than usual.")
187
+ elif samples == "Nurse":
188
+ base_text = st.text_input("Gender Neutral Text", "Nurse administered the vaccine and rubbed alcohol.")
189
+ male_text = st.text_input("Male-assumed Text", "He administered the vaccine and rubbed alcohol.")
190
+ female_text = st.text_input("Female-assumed Text", "She administered the vaccine and rubbed alcohol.")
191
 
192
  enter = st.button("Compare")
193
  if enter:
 
199
  softmax = [round(ts.item(), 4) for ts in torch.nn.functional.softmax(torch.from_numpy(value['score'].values))]
200
  if softmax[0] > softmax[1]:
201
  gender = "male"
202
+ elif abs(softmax[0] - softmax[1]) < 1e-3:
203
  gender = "neutral"
204
  else:
205
  gender = "female"