Trent commited on
Commit
0d51b77
·
1 Parent(s): 6b6585e

Update pagination

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -9,7 +9,7 @@ from backend.utils import load_gender_data
9
  st.title('Demo using Flax-Sentence-Tranformers')
10
 
11
  st.sidebar.title('Tasks')
12
- menu = st.sidebar.radio("", options=["Sentence Similarity", "Asymmetric QA", "Search / Cluster",
13
  "Gender Bias Evaluation"], index=0)
14
 
15
  st.markdown('''
@@ -23,23 +23,28 @@ In addition, we trained [20 models](https://huggingface.co/flax-sentence-embeddi
23
  We also uploaded [8 datasets](https://huggingface.co/flax-sentence-embeddings) specialized for Question Answering, Sentence-Similiarity and Gender Evaluation.
24
  You can view our models and datasets [here](https://huggingface.co/flax-sentence-embeddings).
25
 
26
- | Model | [FullEvaluation](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143) Average | 20Newsgroups Clustering | StackOverflow DupQuestions | Twitter SemEval2015 |
27
- |-----------|---------------------------------------|-------|-------|-------|
28
- | paraphrase-mpnet-base-v2 (previous SOTA) | 67.97 | 47.79 | 49.03 | 72.36 |
29
- | all_datasets_v3_roberta-large (400k steps) | **70.22** | 50.12 | 52.18 | 75.28 |
30
 
 
 
31
  ## Contributions
32
-
33
- - **20 performant Sentence Embedding models** that can be utilized for Sentence Simliarity / Asymmetric QA / Search & Clustering.
34
  - **8 Datasets** from Stackexchange and StackOverflow, PAWS, Gender Evaluation uploaded to HuggingFace Hub.
35
  - **Achieve SOTA** on multiple general purpose Sentence Similarity evaluation tasks by utilizing large TPU memory to maximize
36
  customized Contrastive Loss. [Full Evaluation here](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143).
37
  - **Gender Bias demonstration** that explores inherent bias in general purpose datasets.
38
  - **Search / Clustering demonstration** that showcases real-world use-cases for Sentence Embeddings.
39
 
40
- ''')
41
 
42
- if menu == "Sentence Similarity":
 
 
 
 
 
 
43
  st.header('Sentence Similarity')
44
  st.markdown('''
45
  **Instructions**: You can compare the similarity of the main text with other texts of your choice. In the background,
 
9
  st.title('Demo using Flax-Sentence-Tranformers')
10
 
11
  st.sidebar.title('Tasks')
12
+ menu = st.sidebar.radio("", options=["Contributions & Evaluation", "Sentence Similarity", "Asymmetric QA", "Search / Cluster",
13
  "Gender Bias Evaluation"], index=0)
14
 
15
  st.markdown('''
 
23
  We also uploaded [8 datasets](https://huggingface.co/flax-sentence-embeddings) specialized for Question Answering, Sentence-Similiarity and Gender Evaluation.
24
  You can view our models and datasets [here](https://huggingface.co/flax-sentence-embeddings).
25
 
26
+ ''')
 
 
 
27
 
28
+ if menu == "Contributions & Evaluation":
29
+ st.markdown('''
30
  ## Contributions
31
+
32
+ - **20 Sentence Embedding models** that can be utilized for Sentence Simliarity / Asymmetric QA / Search & Clustering.
33
  - **8 Datasets** from Stackexchange and StackOverflow, PAWS, Gender Evaluation uploaded to HuggingFace Hub.
34
  - **Achieve SOTA** on multiple general purpose Sentence Similarity evaluation tasks by utilizing large TPU memory to maximize
35
  customized Contrastive Loss. [Full Evaluation here](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143).
36
  - **Gender Bias demonstration** that explores inherent bias in general purpose datasets.
37
  - **Search / Clustering demonstration** that showcases real-world use-cases for Sentence Embeddings.
38
 
39
+ ## Model Evaluations
40
 
41
+ | Model | [FullEvaluation](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143) Average | 20Newsgroups Clustering | StackOverflow DupQuestions | Twitter SemEval2015 |
42
+ |-----------|---------------------------------------|-------|-------|-------|
43
+ | paraphrase-mpnet-base-v2 (previous SOTA) | 67.97 | 47.79 | 49.03 | 72.36 |
44
+ | all_datasets_v3_roberta-large (400k steps) | **70.22** | 50.12 | 52.18 | 75.28 |
45
+ | all_datasets_v3_mpnet-base (440k steps) | **70.01** | 50.22 | 52.24 | 76.27 |
46
+ ''')
47
+ elif menu == "Sentence Similarity":
48
  st.header('Sentence Similarity')
49
  st.markdown('''
50
  **Instructions**: You can compare the similarity of the main text with other texts of your choice. In the background,