|
|
|
|
|
|
|
__all__ = ['ORGAN', 'IMAGE_SIZE', 'MODEL_NAME', 'THRESHOLD', 'CODES', 'learn', 'title', 'description', 'examples', |
|
'interpretation', 'demo', 'x_getter', 'y_getter', 'splitter', 'make3D', 'predict', 'infer', |
|
'remove_small_segs', 'to_oberlay_image'] |
|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import skimage |
|
from fastai.vision.all import * |
|
import segmentation_models_pytorch as smp |
|
|
|
import gradio as gr |
|
|
|
|
|
ORGAN = "kidney" |
|
IMAGE_SIZE = 512 |
|
MODEL_NAME = "unetpp_b4_th60_d9414.pkl" |
|
THRESHOLD = float(MODEL_NAME.split("_")[2][2:]) / 100. |
|
CODES = ["Background", "FTU"] |
|
|
|
|
|
def x_getter(r): return r["fnames"] |
|
def y_getter(r): |
|
rle = r["rle"] |
|
shape = (int(r["img_height"]), int(r["img_width"])) |
|
return rle_decode(rle, shape).T |
|
def splitter(a): |
|
enc_params = L(model.encoder.parameters()) |
|
dec_params = L(model.decoder.parameters()) |
|
sg_params = L(model.segmentation_head.parameters()) |
|
untrained_params = L([*dec_params, *sg_params]) |
|
return L([enc_params, untrained_params]) |
|
|
|
|
|
learn = load_learner(MODEL_NAME) |
|
|
|
|
|
def make3D(t: np.array) -> np.array: |
|
t = np.expand_dims(t, axis=2) |
|
t = np.concatenate((t,t,t), axis=2) |
|
return t |
|
|
|
def predict(fn, cutoff_area=200): |
|
data = infer(fn) |
|
data = remove_small_segs(data, cutoff_area=cutoff_area) |
|
return to_oberlay_image(data), data["df"] |
|
|
|
def infer(fn): |
|
img = PILImage.create(fn) |
|
tf_img,_,_,preds = learn.predict(img, with_input=True) |
|
mask = (F.softmax(preds.float(), dim=0)>THRESHOLD).int()[1] |
|
mask = np.array(mask, dtype=np.uint8) |
|
resized_image = Image.fromarray(tf_img.numpy().transpose(1, 2, 0).astype(np.uint8)).resize(img.shape) |
|
resized_image = np.array(resized_image) |
|
return { |
|
"tf_image": tf_img.numpy().transpose(1, 2, 0).astype(np.uint8), |
|
"tf_mask": mask |
|
} |
|
|
|
def remove_small_segs(data, cutoff_area=250): |
|
labeled_mask = skimage.measure.label(data["tf_mask"]) |
|
props = skimage.measure.regionprops(labeled_mask) |
|
df = {"Glomerulus":[], "Area (in px)":[]} |
|
for i, prop in enumerate(props): |
|
if prop.area < cutoff_area: |
|
labeled_mask[labeled_mask==i+1] = 0 |
|
continue |
|
df["Glomerulus"].append(len(df["Glomerulus"]) + 1) |
|
df["Area (in px)"].append(prop.area) |
|
labeled_mask[labeled_mask>0] = 1 |
|
data["tf_mask"] = labeled_mask.astype(np.uint8) |
|
data["df"] = pd.DataFrame(df) |
|
return data |
|
|
|
def to_oberlay_image(data): |
|
img, msk = data["tf_image"], data["tf_mask"] |
|
msk_im = np.zeros_like(img) |
|
|
|
msk_im[:,:,0] = 255 |
|
msk_im[:,:,1] = 80 |
|
msk_im[:,:,2] = 80 |
|
img = Image.fromarray(img).convert("RGBA") |
|
msk_im = Image.fromarray(msk_im).convert("RGBA") |
|
msk = Image.fromarray((msk*255*0.5).astype(np.uint8)) |
|
|
|
img.paste(msk_im, (0, 0), msk, ) |
|
return img |
|
|
|
|
|
title = "Glomerulus Segmentation" |
|
description = """ |
|
A web app, that segments glomeruli in histologic kidney slices! |
|
|
|
The model deployed here is a [UnetPlusPlus](https://arxiv.org/abs/1807.10165) with an [efficientnet-b4](https://arxiv.org/abs/1905.11946) encoder from the [segmentation_models_pytorch](https://github.com/qubvel/segmentation_models.pytorch) library. |
|
|
|
The provided example images are random subset of kidney slices from the [Human Protein Atlas](https://www.proteinatlas.org/). These have been collected separately from model training and have neither been part of the training nor test set. |
|
|
|
Find the corresponding blog post [here](https://www.fast.ai/). |
|
""" |
|
|
|
examples = [str(p) for p in get_image_files("example_images")] |
|
interpretation='default' |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
inputs=gr.components.Image(shape=(IMAGE_SIZE, IMAGE_SIZE)), |
|
outputs=[gr.components.Image(), gr.components.DataFrame()], |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
interpretation=interpretation, |
|
) |
|
|
|
|
|
demo.launch() |
|
|