Initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AUTOGENERATED! DO NOT EDIT! File to edit: ../main.ipynb.
|
2 |
+
|
3 |
+
# %% auto 0
|
4 |
+
__all__ = ['ORGAN', 'IMAGE_SIZE', 'MODEL_NAME', 'THRESHOLD', 'CODES', 'learn', 'title', 'description', 'examples',
|
5 |
+
'interpretation', 'demo', 'x_getter', 'y_getter', 'splitter', 'make3D', 'predict', 'infer',
|
6 |
+
'remove_small_segs', 'to_oberlay_image']
|
7 |
+
|
8 |
+
# %% ../main.ipynb 1
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
import skimage
|
12 |
+
from fastai.vision.all import *
|
13 |
+
import segmentation_models_pytorch as smp
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
# %% ../main.ipynb 2
|
18 |
+
ORGAN = "kidney"
|
19 |
+
IMAGE_SIZE = 512
|
20 |
+
MODEL_NAME = "unetpp_b4_th60_d9414.pkl"
|
21 |
+
THRESHOLD = float(MODEL_NAME.split("_")[2][2:]) / 100.
|
22 |
+
CODES = ["Background", "FTU"] # FTU = functional tissue unit
|
23 |
+
|
24 |
+
# %% ../main.ipynb 3
|
25 |
+
def x_getter(r): return r["fnames"]
|
26 |
+
def y_getter(r):
|
27 |
+
rle = r["rle"]
|
28 |
+
shape = (int(r["img_height"]), int(r["img_width"]))
|
29 |
+
return rle_decode(rle, shape).T
|
30 |
+
def splitter(a):
|
31 |
+
enc_params = L(model.encoder.parameters())
|
32 |
+
dec_params = L(model.decoder.parameters())
|
33 |
+
sg_params = L(model.segmentation_head.parameters())
|
34 |
+
untrained_params = L([*dec_params, *sg_params])
|
35 |
+
return L([enc_params, untrained_params])
|
36 |
+
|
37 |
+
# %% ../main.ipynb 4
|
38 |
+
learn = load_learner(MODEL_NAME)
|
39 |
+
|
40 |
+
# %% ../main.ipynb 5
|
41 |
+
def make3D(t: np.array) -> np.array:
|
42 |
+
t = np.expand_dims(t, axis=2)
|
43 |
+
t = np.concatenate((t,t,t), axis=2)
|
44 |
+
return t
|
45 |
+
|
46 |
+
def predict(fn, cutoff_area=200):
|
47 |
+
data = infer(fn)
|
48 |
+
data = remove_small_segs(data, cutoff_area=cutoff_area)
|
49 |
+
return to_oberlay_image(data), data["df"]
|
50 |
+
|
51 |
+
def infer(fn):
|
52 |
+
img = PILImage.create(fn)
|
53 |
+
tf_img,_,_,preds = learn.predict(img, with_input=True)
|
54 |
+
mask = (F.softmax(preds.float(), dim=0)>THRESHOLD).int()[1]
|
55 |
+
mask = np.array(mask, dtype=np.uint8)
|
56 |
+
resized_image = Image.fromarray(tf_img.numpy().transpose(1, 2, 0).astype(np.uint8)).resize(img.shape)
|
57 |
+
resized_image = np.array(resized_image)
|
58 |
+
return {
|
59 |
+
"tf_image": tf_img.numpy().transpose(1, 2, 0).astype(np.uint8),
|
60 |
+
"tf_mask": mask
|
61 |
+
}
|
62 |
+
|
63 |
+
def remove_small_segs(data, cutoff_area=250):
|
64 |
+
labeled_mask = skimage.measure.label(data["tf_mask"])
|
65 |
+
props = skimage.measure.regionprops(labeled_mask)
|
66 |
+
df = {"Glomerulus":[], "Area (in px)":[]}
|
67 |
+
for i, prop in enumerate(props):
|
68 |
+
if prop.area < cutoff_area:
|
69 |
+
labeled_mask[labeled_mask==i+1] = 0
|
70 |
+
continue
|
71 |
+
df["Glomerulus"].append(len(df["Glomerulus"]) + 1)
|
72 |
+
df["Area (in px)"].append(prop.area)
|
73 |
+
labeled_mask[labeled_mask>0] = 1
|
74 |
+
data["tf_mask"] = labeled_mask.astype(np.uint8)
|
75 |
+
data["df"] = pd.DataFrame(df)
|
76 |
+
return data
|
77 |
+
|
78 |
+
def to_oberlay_image(data):
|
79 |
+
img, msk = data["tf_image"], data["tf_mask"]
|
80 |
+
msk_im = np.zeros_like(img)
|
81 |
+
# rgb code: 255, 80, 80
|
82 |
+
msk_im[:,:,0] = 255
|
83 |
+
msk_im[:,:,1] = 80
|
84 |
+
msk_im[:,:,2] = 80
|
85 |
+
img = Image.fromarray(img).convert("RGBA")
|
86 |
+
msk_im = Image.fromarray(msk_im).convert("RGBA")
|
87 |
+
msk = Image.fromarray((msk*255*0.5).astype(np.uint8))
|
88 |
+
|
89 |
+
img.paste(msk_im, (0, 0), msk, )
|
90 |
+
return img
|
91 |
+
|
92 |
+
# %% ../main.ipynb 6
|
93 |
+
title = "Glomerulus Segmentation"
|
94 |
+
description = """
|
95 |
+
A web app, that segments glomeruli in histologic kidney slices!
|
96 |
+
|
97 |
+
The model deployed here is a [UnetPlusPlus](https://arxiv.org/abs/1807.10165) with an [efficientnet-b4](https://arxiv.org/abs/1905.11946) encoder from the [segmentation_models_pytorch](https://github.com/qubvel/segmentation_models.pytorch) library.
|
98 |
+
|
99 |
+
The provided example images are random subset of kidney slices from the [Human Protein Atlas](https://www.proteinatlas.org/). These have been collected separately from model training and have neither been part of the training nor test set.
|
100 |
+
|
101 |
+
Find the corresponding blog post [here](https://www.fast.ai/).
|
102 |
+
"""
|
103 |
+
#article="<p style='text-align: center'><a href='Blog post URL' target='_blank'>Blog post</a></p>"
|
104 |
+
examples = [str(p) for p in get_image_files("example_images")]
|
105 |
+
interpretation='default'
|
106 |
+
|
107 |
+
# %% ../main.ipynb 7
|
108 |
+
demo = gr.Interface(
|
109 |
+
fn=predict,
|
110 |
+
inputs=gr.components.Image(shape=(IMAGE_SIZE, IMAGE_SIZE)),
|
111 |
+
outputs=[gr.components.Image(), gr.components.DataFrame()],
|
112 |
+
title=title,
|
113 |
+
description=description,
|
114 |
+
examples=examples,
|
115 |
+
interpretation=interpretation,
|
116 |
+
)
|
117 |
+
|
118 |
+
# %% ../main.ipynb 9
|
119 |
+
demo.launch()
|