File size: 2,584 Bytes
5e8e8f0
 
 
 
 
 
 
302b34f
5e8e8f0
302b34f
 
5e8e8f0
 
 
28f9d4d
5bfa5bd
5e8e8f0
 
5bfa5bd
5e8e8f0
 
 
 
 
 
 
28f9d4d
28d750d
 
28f9d4d
 
 
5e8e8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
28f9d4d
9de9e38
28f9d4d
5e8e8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr

from langchain.document_loaders import OnlinePDFLoader

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)

from langchain.llms import OpenAI

from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()

from langchain.vectorstores import Chroma

from langchain.chains import ConversationalRetrievalChain

def loading_pdf():
    return "Loading..."

def pdf_changes(pdf_doc):
    loader = OnlinePDFLoader(pdf_doc.name)
    documents = loader.load()
    texts = text_splitter.split_documents(documents)
    db = Chroma.from_documents(texts, embeddings)
    retriever = db.as_retriever()
    global qa 
    qa = ConversationalRetrievalChain.from_llm(
        llm=OpenAI(temperature=0.5), 
        retriever=retriever, 
        return_source_documents=False)
    global chat_history
    chat_history = []
    return "Ready"

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history[-1][0])
    history[-1][1] = response['result']
    return history

def infer(question):
    
    query = question
    result = qa({"question": query, "chat_history": chat_history})
    #print(result)
    return result["answer"]

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chat with PDF</h1>
    <p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
    when everything is ready, you can start asking questions about the pdf ;)</p>
</div>
"""


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        
        with gr.Column():
            pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
            with gr.Row():
                langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
                load_pdf = gr.Button("Load pdf to langchain")
        
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        with gr.Row():
            question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
    load_pdf.click(loading_pdf, None, langchain_status, queue=False)    
    load_pdf.click(pdf_changes, pdf_doc, langchain_status, queue=False)
    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )

demo.launch()