Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ embeddings = OpenAIEmbeddings()
|
|
12 |
|
13 |
from langchain.vectorstores import Chroma
|
14 |
|
15 |
-
from langchain.chains import
|
16 |
|
17 |
def loading_pdf():
|
18 |
return "Loading..."
|
@@ -24,11 +24,12 @@ def pdf_changes(pdf_doc):
|
|
24 |
db = Chroma.from_documents(texts, embeddings)
|
25 |
retriever = db.as_retriever()
|
26 |
global qa
|
27 |
-
qa =
|
28 |
llm=OpenAI(temperature=0.5),
|
29 |
-
chain_type="stuff",
|
30 |
retriever=retriever,
|
31 |
-
return_source_documents=
|
|
|
|
|
32 |
return "Ready"
|
33 |
|
34 |
def add_text(history, text):
|
@@ -43,9 +44,9 @@ def bot(history):
|
|
43 |
def infer(question):
|
44 |
|
45 |
query = question
|
46 |
-
result = qa({"query":
|
47 |
#print(result)
|
48 |
-
return result
|
49 |
|
50 |
css="""
|
51 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
|
|
12 |
|
13 |
from langchain.vectorstores import Chroma
|
14 |
|
15 |
+
from langchain.chains import ConversationalRetrievalChain
|
16 |
|
17 |
def loading_pdf():
|
18 |
return "Loading..."
|
|
|
24 |
db = Chroma.from_documents(texts, embeddings)
|
25 |
retriever = db.as_retriever()
|
26 |
global qa
|
27 |
+
qa = ConversationalRetrievalChain.from_llm(
|
28 |
llm=OpenAI(temperature=0.5),
|
|
|
29 |
retriever=retriever,
|
30 |
+
return_source_documents=False)
|
31 |
+
global chat_history
|
32 |
+
chat_history = []
|
33 |
return "Ready"
|
34 |
|
35 |
def add_text(history, text):
|
|
|
44 |
def infer(question):
|
45 |
|
46 |
query = question
|
47 |
+
result = qa({"question": query, "chat_history": chat_history})
|
48 |
#print(result)
|
49 |
+
return result["answer"]
|
50 |
|
51 |
css="""
|
52 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|