|
# <center> yuyuanQA模型finetune |
|
本示例主要实现了基于GPT2结构的Yuyuan医疗大模型,通过医疗问答对Finetune,使大模型能够有closebook-qa的能力。 |
|
### 数据和模型 |
|
#### 模型: |
|
finetune的模型是yuyuan模型,余元模型是GPT2的结构,在预训练阶段主要是用PubMed医疗相关的数据集进行的预训练。是一个医疗领域的大模型。模型共有35亿参数,主要参数如下表所示: |
|
|
|
| 配置 | 参数 | |
|
| :---------: | :---: | |
|
| nlayers | 30 | |
|
| nheaders | 32 | |
|
| hidden-size | 3072 | |
|
| seq-length | 1024 | |
|
|
|
预训练的数据,主要医疗相关的论文、杂志期刊等,以英文语料为主。 |
|
#### 数据: |
|
用于finetune的语料是清洗于[MedQuAD](https://github.com/abachaa/MedQuAD)数据集,清洗完成后是下面的格式: |
|
```text |
|
...... |
|
{'question':'.........','answer':'........'} |
|
{'question':'.........','answer':'........'} |
|
...... |
|
``` |
|
### finetune框架以及参数配置 |
|
#### 框架 : |
|
finetune的框架是IDEA研究院CCNL小组整合各大框架的优点开源的[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen),具体代码可以参考[finetune_medicalQA.py](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/dev_wzw/fengshen/examples/wenzhong_qa/finetune_medicalQA.py)和[medicalQADataset.py](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/dev_wzw/fengshen/data/task_dataloader/medicalQADataset.py)。 |
|
#### 训练参数: |
|
训练参数,我们采用了deepspeed相关的配置,用2个集群的节点共16张A100,在很短的时间内完成了finetune。具体参数配置可以参考[finetune_GPT2_medicalQA.sh](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/dev_wzw/fengshen/examples/wenzhong_qa/finetune_GPT2_medicalQA.sh) |
|
### finetune后的效果以及使用 |
|
#### 效果对比: |
|
finetune后的模型,用100对问答对,基于BLEU分与之前用Magetron框架训练的模型进行了简单的对比,效果比较接近。 |
|
|
|
unsmoth method: |
|
| 框架 | 1-gram | 2-gram | 3-gram | 4-gram | |
|
| -------- | ------------------ | ------------------ | ------------------ | ------------------- | |
|
| Fengshen | 0.5241376169070796 | 0.5215762466122144 | 0.4894353584800885 | 0.44840139357073466 | |
|
| Magetron | 0.5321340489166898 | 0.5110257474778213 | 0.4703745962926368 | 0.4310875933354554 | |
|
|
|
smoth method: |
|
| 框架 | 1-gram | 2-gram | 3-gram | 4-gram | |
|
| -------- | ----------------- | ------------------ | ------------------ | ------------------ | |
|
| Fengshen | 0.717829796617609 | 0.6516910802858905 | 0.5859726677095979 | 0.525510691686505 | |
|
| Magetron | 0.776190980974117 | 0.6749801211321476 | 0.5897846253142169 | 0.5230773076722481 | |
|
#### 使用方式: |
|
支持直接用Haggingface或者pytorch-lightning框架调用。由于在finetune的时候,加入了prompt,在问答的时候,输入应该是:" |
|
`Question:your question about medical? answer:`",接着模型就回以续写的方式回答你的问题。用huggingface的调用代码可以参考下面的代码: |
|
```python |
|
from transformers import GPT2Tokenizer,GPT2LMHeadModel |
|
model_path = 'pretrained_model_hf/yuyuanQA-v1' # input your own model file path |
|
model = GPT2LMHeadModel.from_pretrained(model_path) |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_path) |
|
model = model.cuda(6) # move your model to the GPU |
|
model.eval() # just do predict |
|
|
|
def answering(question): |
|
# question = "What should gout patients pay attention to in diet?" |
|
inputs = tokenizer(f'Question:{question} answer:',return_tensors='pt').input_ids.to(model.device) |
|
|
|
generation_output = model.generate(input_ids = inputs, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_length=150, |
|
# max_new_tokens=80, |
|
do_sample=True, |
|
top_p = 0.9, |
|
eos_token_id=50256, |
|
pad_token_id=0, |
|
num_return_sequences = 5) |
|
answers = [] |
|
for idx,sentence in enumerate(generation_output.sequences): |
|
next_sentence = tokenizer.decode(sentence).split('<|endoftext|>')[0] |
|
answer = next_sentence.split(sep='answer:',maxsplit=1)[1] |
|
answers.append(answer) |
|
return answers |
|
answering('your question?') |
|
``` |