Files changed (1) hide show
  1. app.py +0 -143
app.py DELETED
@@ -1,143 +0,0 @@
1
- import gradio as gr
2
- import sahi.utils
3
- from sahi import AutoDetectionModel
4
- import sahi.predict
5
- import sahi.slicing
6
- from PIL import Image
7
- import numpy
8
-
9
- IMAGE_SIZE = 640
10
-
11
- # Images
12
- sahi.utils.file.download_from_url(
13
- "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
14
- "apple_tree.jpg",
15
- )
16
- sahi.utils.file.download_from_url(
17
- "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
18
- "highway.jpg",
19
- )
20
-
21
- sahi.utils.file.download_from_url(
22
- "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
23
- "highway2.jpg",
24
- )
25
-
26
- sahi.utils.file.download_from_url(
27
- "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
28
- "highway3.jpg",
29
- )
30
-
31
-
32
- # Model
33
- model = AutoDetectionModel.from_pretrained(
34
- model_type="yolov5", model_path="yolov5s6.pt", device="cpu", confidence_threshold=0.5, image_size=IMAGE_SIZE
35
- )
36
-
37
-
38
- def sahi_yolo_inference(
39
- image,
40
- slice_height=512,
41
- slice_width=512,
42
- overlap_height_ratio=0.2,
43
- overlap_width_ratio=0.2,
44
- postprocess_type="NMS",
45
- postprocess_match_metric="IOU",
46
- postprocess_match_threshold=0.5,
47
- postprocess_class_agnostic=False,
48
- ):
49
-
50
- image_width, image_height = image.size
51
- sliced_bboxes = sahi.slicing.get_slice_bboxes(
52
- image_height,
53
- image_width,
54
- slice_height,
55
- slice_width,
56
- False,
57
- overlap_height_ratio,
58
- overlap_width_ratio,
59
- )
60
- if len(sliced_bboxes) > 60:
61
- raise ValueError(
62
- f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
63
- )
64
-
65
- # standard inference
66
- prediction_result_1 = sahi.predict.get_prediction(
67
- image=image, detection_model=model
68
- )
69
- print(image)
70
- visual_result_1 = sahi.utils.cv.visualize_object_predictions(
71
- image=numpy.array(image),
72
- object_prediction_list=prediction_result_1.object_prediction_list,
73
- )
74
- output_1 = Image.fromarray(visual_result_1["image"])
75
-
76
- # sliced inference
77
- prediction_result_2 = sahi.predict.get_sliced_prediction(
78
- image=image,
79
- detection_model=model,
80
- slice_height=int(slice_height),
81
- slice_width=int(slice_width),
82
- overlap_height_ratio=overlap_height_ratio,
83
- overlap_width_ratio=overlap_width_ratio,
84
- postprocess_type=postprocess_type,
85
- postprocess_match_metric=postprocess_match_metric,
86
- postprocess_match_threshold=postprocess_match_threshold,
87
- postprocess_class_agnostic=postprocess_class_agnostic,
88
- )
89
- visual_result_2 = sahi.utils.cv.visualize_object_predictions(
90
- image=numpy.array(image),
91
- object_prediction_list=prediction_result_2.object_prediction_list,
92
- )
93
-
94
- output_2 = Image.fromarray(visual_result_2["image"])
95
-
96
- return output_1, output_2
97
-
98
-
99
- inputs = [
100
- gr.Image(type="pil", label="Original Image"),
101
- gr.Number(default=512, label="slice_height"),
102
- gr.Number(default=512, label="slice_width"),
103
- gr.Number(default=0.2, label="overlap_height_ratio"),
104
- gr.Number(default=0.2, label="overlap_width_ratio"),
105
- gr.Dropdown(
106
- ["NMS", "GREEDYNMM"],
107
- type="value",
108
- value="NMS",
109
- label="postprocess_type",
110
- ),
111
- gr.Dropdown(
112
- ["IOU", "IOS"], type="value", default="IOU", label="postprocess_type"
113
- ),
114
- gr.Number(default=0.5, label="postprocess_match_threshold"),
115
- gr.Checkbox(default=True, label="postprocess_class_agnostic"),
116
- ]
117
-
118
- outputs = [
119
- gr.Image(type="pil", label="YOLOv5s"),
120
- gr.Image(type="pil", label="YOLOv5s + SAHI"),
121
- ]
122
-
123
- title = "Small Object Detection with SAHI + YOLOv5"
124
- description = "SAHI + YOLOv5 demo for small object detection. Upload an image or click an example image to use."
125
- article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>"
126
- examples = [
127
- ["apple_tree.jpg", 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
128
- ["highway.jpg", 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
129
- ["highway2.jpg", 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
130
- ["highway3.jpg", 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
131
- ]
132
-
133
- gr.Interface(
134
- sahi_yolo_inference,
135
- inputs,
136
- outputs,
137
- title=title,
138
- description=description,
139
- article=article,
140
- examples=examples,
141
- theme="huggingface",
142
- cache_examples=True,
143
- ).launch(debug=True, enable_queue=True)