Spaces:
Running
Running
import json | |
import os | |
from pathlib import Path | |
import anthropic | |
import gradio as gr | |
import numpy as np | |
from dotenv import load_dotenv | |
from elevenlabs import ElevenLabs | |
from fastapi import FastAPI | |
from fastapi.responses import HTMLResponse, StreamingResponse | |
from fastrtc import ( | |
AdditionalOutputs, | |
ReplyOnPause, | |
Stream, | |
get_tts_model, | |
get_twilio_turn_credentials, | |
) | |
from fastrtc.utils import audio_to_bytes | |
from gradio.utils import get_space | |
from groq import Groq | |
from pydantic import BaseModel | |
load_dotenv() | |
groq_client = Groq() | |
claude_client = anthropic.Anthropic() | |
tts_client = ElevenLabs(api_key=os.environ["ELEVENLABS_API_KEY"]) | |
curr_dir = Path(__file__).parent | |
tts_model = get_tts_model() | |
def response( | |
audio: tuple[int, np.ndarray], | |
chatbot: list[dict] | None = None, | |
): | |
chatbot = chatbot or [] | |
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot] | |
prompt = groq_client.audio.transcriptions.create( | |
file=("audio-file.mp3", audio_to_bytes(audio)), | |
model="whisper-large-v3-turbo", | |
response_format="verbose_json", | |
).text | |
print("prompt", prompt) | |
chatbot.append({"role": "user", "content": prompt}) | |
yield AdditionalOutputs(chatbot) | |
messages.append({"role": "user", "content": prompt}) | |
response = claude_client.messages.create( | |
model="claude-3-5-haiku-20241022", | |
max_tokens=512, | |
messages=messages, # type: ignore | |
) | |
response_text = " ".join( | |
block.text # type: ignore | |
for block in response.content | |
if getattr(block, "type", None) == "text" | |
) | |
chatbot.append({"role": "assistant", "content": response_text}) | |
import time | |
start = time.time() | |
print("starting tts", start) | |
for i, chunk in enumerate(tts_model.stream_tts_sync(response_text)): | |
print("chunk", i, time.time() - start) | |
yield chunk | |
print("finished tts", time.time() - start) | |
yield AdditionalOutputs(chatbot) | |
chatbot = gr.Chatbot(type="messages") | |
stream = Stream( | |
modality="audio", | |
mode="send-receive", | |
handler=ReplyOnPause(response), | |
additional_outputs_handler=lambda a, b: b, | |
additional_inputs=[chatbot], | |
additional_outputs=[chatbot], | |
rtc_configuration=get_twilio_turn_credentials() if get_space() else None, | |
concurrency_limit=20 if get_space() else None, | |
) | |
class Message(BaseModel): | |
role: str | |
content: str | |
class InputData(BaseModel): | |
webrtc_id: str | |
chatbot: list[Message] | |
app = FastAPI() | |
stream.mount(app) | |
async def _(): | |
rtc_config = get_twilio_turn_credentials() if get_space() else None | |
html_content = (curr_dir / "index.html").read_text() | |
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config)) | |
return HTMLResponse(content=html_content, status_code=200) | |
async def _(body: InputData): | |
stream.set_input(body.webrtc_id, body.model_dump()["chatbot"]) | |
return {"status": "ok"} | |
def _(webrtc_id: str): | |
async def output_stream(): | |
async for output in stream.output_stream(webrtc_id): | |
chatbot = output.args[0] | |
yield f"event: output\ndata: {json.dumps(chatbot[-1])}\n\n" | |
return StreamingResponse(output_stream(), media_type="text/event-stream") | |
if __name__ == "__main__": | |
import os | |
if (mode := os.getenv("MODE")) == "UI": | |
stream.ui.launch(server_port=7860, server_name="0.0.0.0") | |
elif mode == "PHONE": | |
stream.fastphone(host="0.0.0.0", port=7860) | |
else: | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |