Spaces:
Running
Running
File size: 3,652 Bytes
19b72df fd97f9d 19b72df fd97f9d 19b72df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import json
import os
from pathlib import Path
import anthropic
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
AdditionalOutputs,
ReplyOnPause,
Stream,
get_tts_model,
get_twilio_turn_credentials,
)
from fastrtc.utils import audio_to_bytes
from gradio.utils import get_space
from groq import Groq
from pydantic import BaseModel
load_dotenv()
groq_client = Groq()
claude_client = anthropic.Anthropic()
tts_client = ElevenLabs(api_key=os.environ["ELEVENLABS_API_KEY"])
curr_dir = Path(__file__).parent
tts_model = get_tts_model()
def response(
audio: tuple[int, np.ndarray],
chatbot: list[dict] | None = None,
):
chatbot = chatbot or []
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
prompt = groq_client.audio.transcriptions.create(
file=("audio-file.mp3", audio_to_bytes(audio)),
model="whisper-large-v3-turbo",
response_format="verbose_json",
).text
print("prompt", prompt)
chatbot.append({"role": "user", "content": prompt})
yield AdditionalOutputs(chatbot)
messages.append({"role": "user", "content": prompt})
response = claude_client.messages.create(
model="claude-3-5-haiku-20241022",
max_tokens=512,
messages=messages, # type: ignore
)
response_text = " ".join(
block.text # type: ignore
for block in response.content
if getattr(block, "type", None) == "text"
)
chatbot.append({"role": "assistant", "content": response_text})
import time
start = time.time()
print("starting tts", start)
for i, chunk in enumerate(tts_model.stream_tts_sync(response_text)):
print("chunk", i, time.time() - start)
yield chunk
print("finished tts", time.time() - start)
yield AdditionalOutputs(chatbot)
chatbot = gr.Chatbot(type="messages")
stream = Stream(
modality="audio",
mode="send-receive",
handler=ReplyOnPause(response),
additional_outputs_handler=lambda a, b: b,
additional_inputs=[chatbot],
additional_outputs=[chatbot],
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
concurrency_limit=20 if get_space() else None,
)
class Message(BaseModel):
role: str
content: str
class InputData(BaseModel):
webrtc_id: str
chatbot: list[Message]
app = FastAPI()
stream.mount(app)
@app.get("/")
async def _():
rtc_config = get_twilio_turn_credentials() if get_space() else None
html_content = (curr_dir / "index.html").read_text()
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
return HTMLResponse(content=html_content, status_code=200)
@app.post("/input_hook")
async def _(body: InputData):
stream.set_input(body.webrtc_id, body.model_dump()["chatbot"])
return {"status": "ok"}
@app.get("/outputs")
def _(webrtc_id: str):
async def output_stream():
async for output in stream.output_stream(webrtc_id):
chatbot = output.args[0]
yield f"event: output\ndata: {json.dumps(chatbot[-1])}\n\n"
return StreamingResponse(output_stream(), media_type="text/event-stream")
if __name__ == "__main__":
import os
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(server_port=7860, server_name="0.0.0.0")
elif mode == "PHONE":
stream.fastphone(host="0.0.0.0", port=7860)
else:
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|