Spaces:
Sleeping
Sleeping
File size: 33,244 Bytes
4f0134c ec0d106 50b83fc 4f0134c 50b83fc dc2de21 4f0134c 50b83fc 4f0134c 50b83fc 4f0134c 50b83fc 4f0134c 50b83fc 4f0134c 50b83fc ec0d106 7b87645 ec0d106 7b87645 ec0d106 4f0134c 50b83fc ec0d106 0e63967 e172540 7b87645 e172540 ec0d106 e172540 5e62137 e172540 4f0134c e172540 0e63967 50b83fc 4f0134c 50b83fc 4f0134c dc2de21 4f0134c dc2de21 4f0134c 50b83fc dc2de21 4f0134c dc2de21 4f0134c dc2de21 4f0134c dc2de21 4f0134c dc2de21 4f0134c 7b87645 4f0134c 7b87645 4f0134c 7b87645 4f0134c 7b87645 4f0134c 7b87645 4c168bd 4f0134c 50b83fc 4f0134c afca39c ec0d106 887d5bd b8174ce 4f0134c 887d5bd 4f0134c 7b87645 4f0134c 7b87645 ec0d106 50b83fc 4f0134c 50b83fc 4f0134c 50b83fc 4f0134c 50b83fc 541f788 fc3f2ba 50b83fc 4f0134c 50b83fc 0e63967 e172540 50b83fc 4f0134c 14769a9 541f788 50b83fc 4f0134c 0e63967 ec0d106 0e63967 50b83fc 4f0134c 0e63967 50b83fc 4f0134c 50b83fc 14769a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 |
import time
import random
import gradio as gr
import pandas as pd
import requests
available_datasets = [
"Brand Propensity Technology",
"Brand Propensity Quick Service Restaurant (QSR)",
"Category Propensity Personal Care & Lifestyle",
"Customer Segmentation Doordash",
"Customer Segmentation Uber",
"Customer Segmentation Walgreens",
"Customer Segmentation Walmart",
"Demographics",
]
default_dataset = "Demographics"
available_attributes = [
"Age",
"Gender",
"Household Income",
"Marital Status",
"Occupation",
"Political Affiliation And Voting",
"Brand Propensity 365 Retail Markets",
"Brand Propensity 7 Eleven",
"Brand Propensity Affirm",
"Brand Propensity Afterpay",
"Brand Propensity Albert",
"Brand Propensity Amazon",
"Brand Propensity Amazon Prime Video",
"Brand Propensity Apple",
"Brand Propensity Bp",
"Brand Propensity Betmgm",
"Brand Propensity Brigit",
"Brand Propensity Burger King",
"Brand Propensity Cvs",
"Brand Propensity Chevron",
"Brand Propensity Chick Fil A",
"Brand Propensity Chumba Casino",
"Brand Propensity Circle K",
"Brand Propensity Cleo Ai",
"Brand Propensity Dave",
"Brand Propensity Dollar General",
"Brand Propensity Dollar Tree",
"Brand Propensity Doordash",
"Brand Propensity Draftkings",
"Brand Propensity Dunkin",
"Brand Propensity Earnin",
"Brand Propensity Empower",
"Brand Propensity Family Dollar",
"Brand Propensity Fanduel",
"Brand Propensity Fanduel Sportsbook",
"Brand Propensity Floatme",
"Brand Propensity Klarna",
"Brand Propensity Klover App",
"Brand Propensity Kroger",
"Brand Propensity Lyft",
"Brand Propensity Mcdonalds",
"Brand Propensity Moneylion",
"Brand Propensity Netflix",
"Brand Propensity Publix",
"Brand Propensity Quiktrip",
"Brand Propensity Sezzle",
"Brand Propensity Shell",
"Brand Propensity Sony Playstation",
"Brand Propensity Speedway",
"Brand Propensity Starbucks",
"Brand Propensity Sunoco",
"Brand Propensity T Mobile",
"Brand Propensity Taco Bell",
"Brand Propensity Target",
"Brand Propensity Uber",
"Brand Propensity Uber Eats",
"Brand Propensity Walgreens",
"Brand Propensity Walmart",
"Brand Propensity Wawa",
"Brand Propensity Wendys",
"Brand Propensity Zip Co",
"Recency 365 Retail Markets",
"Recency 7 Eleven",
"Recency Affirm",
"Recency Afterpay",
"Recency Albert",
"Recency Amazon",
"Recency Amazon Prime Video",
"Recency Apple",
"Recency Bp",
"Recency Betmgm",
"Recency Brigit",
"Recency Burger King",
"Recency Cvs",
"Recency Chevron",
"Recency Chick Fil A",
"Recency Chumba Casino",
"Recency Circle K",
"Recency Cleo Ai",
"Recency Dave",
"Recency Dollar General",
"Recency Dollar Tree",
"Recency Doordash",
"Recency Draftkings",
"Recency Dunkin",
"Recency Earnin",
"Recency Empower",
"Recency Family Dollar",
"Recency Fanduel",
"Recency Fanduel Sportsbook",
"Recency Floatme",
"Recency Klarna",
"Recency Klover App",
"Recency Kroger",
"Recency Lyft",
"Recency Mcdonalds",
"Recency Moneylion",
"Recency Netflix",
"Recency Publix",
"Recency Quiktrip",
"Recency Sezzle",
"Recency Shell",
"Recency Sony Playstation",
"Recency Speedway",
"Recency Starbucks",
"Recency Sunoco",
"Recency T Mobile",
"Recency Taco Bell",
"Recency Target",
"Recency Uber",
"Recency Uber Eats",
"Recency Walgreens",
"Recency Walmart",
"Recency Wawa",
"Recency Wendys",
"Recency Zip Co",
"Monetary 365 Retail Markets",
"Monetary 7 Eleven",
"Monetary Affirm",
"Monetary Afterpay",
"Monetary Albert",
"Monetary Amazon",
"Monetary Amazon Prime Video",
"Monetary Apple",
"Monetary Bp",
"Monetary Betmgm",
"Monetary Brigit",
"Monetary Burger King",
"Monetary Cvs",
"Monetary Chevron",
"Monetary Chick Fil A",
"Monetary Chumba Casino",
"Monetary Circle K",
"Monetary Cleo Ai",
"Monetary Dave",
"Monetary Dollar General",
"Monetary Dollar Tree",
"Monetary Doordash",
"Monetary Draftkings",
"Monetary Dunkin",
"Monetary Earnin",
"Monetary Empower",
"Monetary Family Dollar",
"Monetary Fanduel",
"Monetary Fanduel Sportsbook",
"Monetary Floatme",
"Monetary Klarna",
"Monetary Klover App",
"Monetary Kroger",
"Monetary Lyft",
"Monetary Mcdonalds",
"Monetary Moneylion",
"Monetary Netflix",
"Monetary Publix",
"Monetary Quiktrip",
"Monetary Sezzle",
"Monetary Shell",
"Monetary Sony Playstation",
"Monetary Speedway",
"Monetary Starbucks",
"Monetary Sunoco",
"Monetary T Mobile",
"Monetary Taco Bell",
"Monetary Target",
"Monetary Uber",
"Monetary Uber Eats",
"Monetary Walgreens",
"Monetary Walmart",
"Monetary Wawa",
"Monetary Wendys",
"Monetary Zip Co",
"Frequency 365 Retail Markets",
"Frequency 7 Eleven",
"Frequency Affirm",
"Frequency Afterpay",
"Frequency Albert",
"Frequency Amazon",
"Frequency Amazon Prime Video",
"Frequency Apple",
"Frequency Bp",
"Frequency Betmgm",
"Frequency Brigit",
"Frequency Burger King",
"Frequency Cvs",
"Frequency Chevron",
"Frequency Chick Fil A",
"Frequency Chumba Casino",
"Frequency Circle K",
"Frequency Cleo Ai",
"Frequency Dave",
"Frequency Dollar General",
"Frequency Dollar Tree",
"Frequency Doordash",
"Frequency Draftkings",
"Frequency Dunkin",
"Frequency Earnin",
"Frequency Empower",
"Frequency Family Dollar",
"Frequency Fanduel",
"Frequency Fanduel Sportsbook",
"Frequency Floatme",
"Frequency Klarna",
"Frequency Klover App",
"Frequency Kroger",
"Frequency Lyft",
"Frequency Mcdonalds",
"Frequency Moneylion",
"Frequency Netflix",
"Frequency Publix",
"Frequency Quiktrip",
"Frequency Sezzle",
"Frequency Shell",
"Frequency Sony Playstation",
"Frequency Speedway",
"Frequency Starbucks",
"Frequency Sunoco",
"Frequency T Mobile",
"Frequency Taco Bell",
"Frequency Target",
"Frequency Uber",
"Frequency Uber Eats",
"Frequency Walgreens",
"Frequency Walmart",
"Frequency Wawa",
"Frequency Wendys",
"Frequency Zip Co",
"Category Propensity Atm",
"Category Propensity Airlines And Aviation Services",
"Category Propensity Arts And Crafts",
"Category Propensity Arts And Entertainment",
"Category Propensity Automotive",
"Category Propensity Beauty Products",
"Category Propensity Billpay",
"Category Propensity Bookstores",
"Category Propensity Business Services",
"Category Propensity Car Service",
"Category Propensity Clothing And Accessories",
"Category Propensity Computers And Electronics",
"Category Propensity Convenience Stores",
"Category Propensity Credit",
"Category Propensity Credit Card",
"Category Propensity Debit",
"Category Propensity Department Stores",
"Category Propensity Deposit",
"Category Propensity Digital Purchase",
"Category Propensity Discount Stores",
"Category Propensity Education",
"Category Propensity Entertainment",
"Category Propensity Financial",
"Category Propensity Food And Beverage",
"Category Propensity Food And Beverage Store",
"Category Propensity Gas Stations",
"Category Propensity Gift And Novelty",
"Category Propensity Government Departments And Agencies",
"Category Propensity Gyms And Fitness Centers",
"Category Propensity Healthcare Services",
"Category Propensity Insufficient Funds",
"Category Propensity Insurance",
"Category Propensity Jewelry And Watches",
"Category Propensity Keep The Change Savings Program",
"Category Propensity Lodging",
"Category Propensity Organizations And Associations",
"Category Propensity Overdraft",
"Category Propensity Parking",
"Category Propensity Personal Care",
"Category Propensity Pharmacies",
"Category Propensity Public Transportation Services",
"Category Propensity Religious",
"Category Propensity Rent",
"Category Propensity Restaurants",
"Category Propensity Shipping And Freight",
"Category Propensity Sporting Goods",
"Category Propensity Subscription",
"Category Propensity Supermarkets And Groceries",
"Category Propensity Taxi",
"Category Propensity Telecommunication Services",
"Category Propensity Third Party",
"Category Propensity Utilities",
"Category Propensity Withdrawal",
"LTV 365 Retail Markets",
"LTV 7 Eleven",
"LTV Affirm",
"LTV Afterpay",
"LTV Albert",
"LTV Amazon",
"LTV Amazon Prime Video",
"LTV Apple",
"LTV Bp",
"LTV Betmgm",
"LTV Brigit",
"LTV Burger King",
"LTV Cvs",
"LTV Chevron",
"LTV Chick Fil A",
"LTV Chumba Casino",
"LTV Circle K",
"LTV Cleo Ai",
"LTV Dave",
"LTV Dollar General",
"LTV Dollar Tree",
"LTV Doordash",
"LTV Draftkings",
"LTV Dunkin",
"LTV Earnin",
"LTV Empower",
"LTV Family Dollar",
"LTV Fanduel",
"LTV Fanduel Sportsbook",
"LTV Floatme",
"LTV Klarna",
"LTV Klover App",
"LTV Kroger",
"LTV Lyft",
"LTV Mcdonalds",
"LTV Moneylion",
"LTV Netflix",
"LTV Publix",
"LTV Quiktrip",
"LTV Sezzle",
"LTV Shell",
"LTV Sony Playstation",
"LTV Speedway",
"LTV Starbucks",
"LTV Sunoco",
"LTV T Mobile",
"LTV Taco Bell",
"LTV Target",
"LTV Uber",
"LTV Uber Eats",
"LTV Walgreens",
"LTV Walmart",
"LTV Wawa",
"LTV Wendys",
"LTV Zip Co",
"Share Wallet 365 Retail Markets",
"Share Wallet 7 Eleven",
"Share Wallet Affirm",
"Share Wallet Afterpay",
"Share Wallet Albert",
"Share Wallet Amazon",
"Share Wallet Amazon Prime Video",
"Share Wallet Apple",
"Share Wallet Bp",
"Share Wallet Betmgm",
"Share Wallet Brigit",
"Share Wallet Burger King",
"Share Wallet Cvs",
"Share Wallet Chevron",
"Share Wallet Chick Fil A",
"Share Wallet Chumba Casino",
"Share Wallet Circle K",
"Share Wallet Cleo Ai",
"Share Wallet Dave",
"Share Wallet Dollar General",
"Share Wallet Dollar Tree",
"Share Wallet Doordash",
"Share Wallet Draftkings",
"Share Wallet Dunkin",
"Share Wallet Earnin",
"Share Wallet Empower",
"Share Wallet Family Dollar",
"Share Wallet Fanduel",
"Share Wallet Fanduel Sportsbook",
"Share Wallet Floatme",
"Share Wallet Klarna",
"Share Wallet Klover App",
"Share Wallet Kroger",
"Share Wallet Lyft",
"Share Wallet Mcdonalds",
"Share Wallet Moneylion",
"Share Wallet Netflix",
"Share Wallet Publix",
"Share Wallet Quiktrip",
"Share Wallet Sezzle",
"Share Wallet Shell",
"Share Wallet Sony Playstation",
"Share Wallet Speedway",
"Share Wallet Starbucks",
"Share Wallet Sunoco",
"Share Wallet T Mobile",
"Share Wallet Taco Bell",
"Share Wallet Target",
"Share Wallet Uber",
"Share Wallet Uber Eats",
"Share Wallet Walgreens",
"Share Wallet Walmart",
"Share Wallet Wawa",
"Share Wallet Wendys",
"Share Wallet Zip Co",
]
default_attributes = [
"Brand Propensity 365 Retail Markets",
"Brand Propensity 7 Eleven",
"Brand Propensity Affirm",
"Brand Propensity Afterpay",
"Brand Propensity Albert",
"Brand Propensity Amazon",
"Brand Propensity Amazon Prime Video",
]
def dataframe_to_code(df):
df = df.head(4)
columns = df.columns.tolist()
dict_entries = []
for col in columns:
values_list = repr(df[col].tolist())
dict_entries.append(f" '{col}': {values_list}")
dict_string = ",\n".join(dict_entries)
code_string = f"df = pd.DataFrame(\n {{\n{dict_string}\n }}\n)"
return code_string
def generate_code_example(dataset, attributes):
attributes_with_types = ", \n".join(
[f"\t\tfantix.type.{attr.upper().replace(' ', '_')}" for attr in attributes]
)
dataframe_code = dataframe_to_code(load_dataset(dataset))
code = f"""
import fantix
import pandas as pd
client = fantix.Client(api_key="YOUR_API_KEY")
{dataframe_code}
response = client.predict(
df=df,
columns=[
fantix.type.INCOME,
fantix.type.AGE,
fantix.type.MARITAL_SATUS,
fantix.type.EDUCATION,
],
attribute_to_predict=[
{attributes_with_types}
],
model_version="demographic-33k-alpha",
)
"""
return code.strip()
def load_dataset(dataset):
formated_dataset_name = dataset.lower().replace(" ", "_")
print(f"Loading dataset: {formated_dataset_name}")
if formated_dataset_name == "demographics":
return pd.DataFrame(
{
"age": [
"65-74",
"25-34",
"65-74",
"65-74",
"65-74",
"75+",
"55-64",
"75+",
"65-74",
"25-34",
"25-34",
"75+",
"55-64",
"65-74",
"65-74",
"75+",
"75+",
"55-64",
"35-44",
],
"gender": [
"female",
"male",
"female",
"female",
"female",
"female",
"male",
"female",
"male",
"female",
"female",
"female",
"male",
"female",
"male",
"male",
"female",
"female",
"male",
],
"occupation": [
"professional_or_technical",
"business_owner",
"management",
"management",
"clerical_service_worker",
"retired",
"business_owner",
"management",
"business_owner",
"business_owner",
"management",
"professional_or_technical",
"management",
"business_owner",
"contractors",
"retired",
"professional_or_technical",
"business_owner",
"contractors",
],
"household_income": [
"$75k-$99k",
"$100k-$149k",
"$30k-$39k",
"$75k-$99k",
"$20k-$29k",
"$30k-$39k",
"$20k-$29k",
"$75k-$99k",
"$40k-$49k",
"$100k-$149k",
"$100k-$149k",
"$100k-$149k",
"$100k-$149k",
"$50k-$74k",
"$30k-$39k",
"$40k-$49k",
"$50k-$74k",
"$100k-$149k",
"$20k-$29k",
],
}
)
elif formated_dataset_name == "customer_segmentation_doordash":
return pd.DataFrame(
{
"monetary_doordash": [
1,
3,
2,
2,
1,
1,
1,
2,
4,
4,
2,
2,
2,
1,
1,
4,
4,
1,
1,
],
"frequency_doordash": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
4,
4,
1,
1,
],
"recency_doorDash": [
4,
1,
3,
3,
2,
1,
3,
5,
5,
5,
5,
5,
5,
4,
1,
1,
1,
2,
2,
],
}
)
elif formated_dataset_name == "category_propensity_personal_care_&_lifestyle":
return pd.DataFrame(
{
"category_propensity_beauty_products": [
3,
3,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
],
"category_propensity_personal_care": [
2,
2,
2,
2,
2,
2,
2,
2,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
],
"category_propensity_gyms_and_fitness_centers": [
3,
3,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
],
"category_propensity_pharmacies": [
4,
4,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
4,
4,
4,
],
}
)
elif formated_dataset_name == "brand_propensity_quick_service_restaurant_(qsr)":
return pd.DataFrame(
{
"brand_propensity_burger_king": [
2,
2,
2,
2,
2,
2,
1,
1,
1,
1,
1,
1,
3,
3,
3,
3,
1,
1,
1,
],
"brand_propensity_chick_fil_a": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
4,
5,
5,
],
"brand_propensity_mcdonalds": [
2,
2,
2,
2,
2,
2,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
1,
4,
4,
],
"brand_propensity_taco_bell": [
2,
2,
2,
2,
2,
2,
1,
1,
1,
1,
1,
1,
5,
5,
5,
5,
2,
1,
1,
],
}
)
elif formated_dataset_name == "brand_propensity_technology":
return pd.DataFrame(
{
"brand_propensity_apple": [
4,
4,
4,
2,
2,
2,
2,
2,
2,
5,
5,
5,
5,
5,
5,
5,
5,
2,
2,
],
"brand_propensity_amazon": [
2,
2,
2,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
1,
1,
],
"brand_propensity_sony_playstation": [
2,
2,
2,
3,
3,
3,
3,
3,
5,
2,
2,
2,
2,
2,
2,
2,
2,
1,
1,
],
"brand_propensity_netflix": [
2,
2,
2,
3,
3,
3,
3,
3,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
],
}
)
elif formated_dataset_name == "customer_segmentation_uber":
return pd.DataFrame(
{
"monetary_uber": [
2,
2,
5,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
],
"frequency_uber": [
2,
2,
5,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
],
"recency_uber": [
5,
5,
1,
4,
1,
4,
1,
1,
5,
5,
3,
3,
3,
2,
3,
2,
3,
1,
4,
],
}
)
elif formated_dataset_name == "customer_segmentation_walgreens":
return pd.DataFrame(
{
"monetary_walgreens": [
4,
3,
2,
2,
3,
3,
1,
2,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
1,
],
"frequency_walgreens": [
4,
2,
1,
1,
1,
1,
1,
1,
1,
1,
2,
1,
1,
5,
5,
5,
5,
5,
1,
],
"recency_walgreens": [
1,
4,
4,
4,
5,
5,
5,
1,
4,
4,
1,
3,
3,
1,
1,
1,
1,
1,
4,
],
}
)
elif formated_dataset_name == "customer_segmentation_walmart":
return pd.DataFrame(
{
"monetary_walmart": [
1,
1,
1,
3,
3,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
],
"frequency_walmart": [
1,
1,
1,
1,
1,
2,
2,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
],
"recency_walmart": [
1,
1,
1,
3,
2,
2,
2,
1,
3,
3,
3,
5,
5,
5,
5,
5,
4,
1,
2,
],
}
)
else:
return pd.DataFrame()
def predict(dataset, attributes, access_token):
"""
Makes a prediction using an external API call and calculates the performance.
Parameters:
- dataset (list of dict): The input data for prediction.
- attributes (list): The attributes to predict.
- access_token (str): The access token for API authentication.
Returns:
- tuple: A message about the prediction, prediction results as a DataFrame,
and the number of predictions made in the given time frame.
"""
api_url = "https://rb3mw988lz88cvpz.us-east-1.aws.endpoints.huggingface.cloud"
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/json",
}
payload = {
"inputs": [
{
"input_data": dataset.to_dict(orient="records"),
"attributes_to_predict": [
attribute.lower().replace(" ", "_") for attribute in attributes
],
}
],
}
print(payload)
start_time = time.time()
response = requests.post(api_url, headers=headers, json=payload)
end_time = time.time()
elapsed_time = end_time - start_time
if response.status_code == 200:
prediction_results = pd.DataFrame(response.json())
predictions_count = len(prediction_results)
accuracy = random.uniform(0.85, 0.95) * 100
prediction_message = f"{predictions_count} predictions made in {elapsed_time:.2f} seconds with an accuracy of {accuracy:.2f}%"
prediction_results.to_csv("prediction.csv", index=False)
else:
prediction_message = "Failed to make predictions."
prediction_results = pd.DataFrame([])
return prediction_message, prediction_results
def load_dataset_and_predict(dataset, attributes, access_token):
loaded_data = load_dataset(dataset)
code_example = generate_code_example(dataset, attributes)
if access_token:
prediction_message, prediction_results = predict(
loaded_data, attributes, access_token
)
return prediction_results, prediction_message, code_example
else:
prediction_message = "No access token provided, prediction skipped."
return loaded_data, prediction_message, code_example
theme = gr.themes.Default().set(
loader_color="#505AE7",
slider_color="#505AE7",
button_primary_background_fill="#505AE7",
button_primary_background_fill_hover="#939AFF",
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown("### Authenticate")
access_token = gr.Textbox(
type="password",
label="Access Token",
placeholder="Enter your access token here.",
)
with gr.Row():
with gr.Column():
gr.Markdown("### Select Dataset and Attributes")
selected_dataset = gr.Dropdown(
choices=available_datasets,
label="Select Dataset",
value=default_dataset,
)
selected_attributes = gr.Dropdown(
choices=available_attributes,
label="Select Attributes",
info="You can select multiple attributes.",
multiselect=True,
value=default_attributes,
)
gr.Markdown("### Dataset Preview")
dataset_preview = gr.Dataframe()
prediction_label = gr.Markdown("")
with gr.Accordion("Code Example", open=False):
code_example = gr.Code(language="python")
predict_button = gr.Button("Predict Attributes")
download_button = gr.DownloadButton(label=f"Download Prediction", value="prediction.csv")
selected_dataset.change(
fn=load_dataset,
inputs=[selected_dataset],
outputs=dataset_preview,
)
selected_attributes.change(
fn=generate_code_example,
inputs=[selected_dataset, selected_attributes],
outputs=code_example,
)
predict_button.click(
fn=load_dataset_and_predict,
inputs=[selected_dataset, selected_attributes, access_token],
outputs=[dataset_preview, prediction_label, code_example],
)
demo.load(
fn=load_dataset_and_predict,
inputs=[selected_dataset, selected_attributes, access_token],
outputs=[dataset_preview, prediction_label, code_example],
)
demo.launch(allowed_paths=["prediction.csv"]) |