fbellomo commited on
Commit
dc2de21
·
verified ·
1 Parent(s): 7b87645

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -7,14 +7,14 @@ import pandas as pd
7
  import requests
8
 
9
  available_datasets = [
 
 
 
 
 
 
 
10
  "Demographics",
11
- "DoorDash Customer Segmentation",
12
- "Personal Care and Lifestyle Category Propensity",
13
- "Quick Service Restaurant (QSR) Brand Propensity",
14
- "Technology Brand Propensity",
15
- "Uber Customer Segmentation",
16
- "Walgreens Customer Segmentation",
17
- "Walmart Customer Segmentation",
18
  ]
19
 
20
  default_dataset = "Demographics"
@@ -560,7 +560,7 @@ def load_dataset(dataset):
560
  ],
561
  }
562
  )
563
- elif formated_dataset_name == "doordash_customer_segmentation":
564
  return pd.DataFrame(
565
  {
566
  "monetary_doordash": [
@@ -628,7 +628,7 @@ def load_dataset(dataset):
628
  ],
629
  }
630
  )
631
- elif formated_dataset_name == "personal_care_and_lifestyle_category_propensity":
632
  return pd.DataFrame(
633
  {
634
  "category_propensity_beauty_products": [
@@ -717,7 +717,7 @@ def load_dataset(dataset):
717
  ],
718
  }
719
  )
720
- elif formated_dataset_name == "quick_service_restaurant_(qsr)_brand_propensity":
721
  return pd.DataFrame(
722
  {
723
  "brand_propensity_burger_king": [
@@ -807,7 +807,7 @@ def load_dataset(dataset):
807
  }
808
  )
809
 
810
- elif formated_dataset_name == "technology_brand_propensity":
811
  return pd.DataFrame(
812
  {
813
  "brand_propensity_apple": [
@@ -896,7 +896,7 @@ def load_dataset(dataset):
896
  ],
897
  }
898
  )
899
- elif formated_dataset_name == "uber_customer_segmentation":
900
  return pd.DataFrame(
901
  {
902
  "monetary_uber": [
@@ -964,7 +964,7 @@ def load_dataset(dataset):
964
  ],
965
  }
966
  )
967
- elif formated_dataset_name == "walgreens_customer_segmentation":
968
  return pd.DataFrame(
969
  {
970
  "monetary_walgreens": [
@@ -1032,7 +1032,7 @@ def load_dataset(dataset):
1032
  ],
1033
  }
1034
  )
1035
- elif formated_dataset_name == "walmart_customer_segmentation":
1036
  return pd.DataFrame(
1037
  {
1038
  "monetary_walmart": [
 
7
  import requests
8
 
9
  available_datasets = [
10
+ "Brand Propensity Technology",
11
+ "Brand Propensity Quick Service Restaurant (QSR)",
12
+ "Category Propensity Personal Care & Lifestyle",
13
+ "Customer Segmentation Doordash",
14
+ "Customer Segmentation Uber",
15
+ "Customer Segmentation Walgreens",
16
+ "Customer Segmentation Walmart",
17
  "Demographics",
 
 
 
 
 
 
 
18
  ]
19
 
20
  default_dataset = "Demographics"
 
560
  ],
561
  }
562
  )
563
+ elif formated_dataset_name == "customer_segmentation_doordash":
564
  return pd.DataFrame(
565
  {
566
  "monetary_doordash": [
 
628
  ],
629
  }
630
  )
631
+ elif formated_dataset_name == "category_propensity_personal_care_&_lifestyle":
632
  return pd.DataFrame(
633
  {
634
  "category_propensity_beauty_products": [
 
717
  ],
718
  }
719
  )
720
+ elif formated_dataset_name == "brand_propensity_quick_service_restaurant_(qsr)":
721
  return pd.DataFrame(
722
  {
723
  "brand_propensity_burger_king": [
 
807
  }
808
  )
809
 
810
+ elif formated_dataset_name == "brand_propensity_technology":
811
  return pd.DataFrame(
812
  {
813
  "brand_propensity_apple": [
 
896
  ],
897
  }
898
  )
899
+ elif formated_dataset_name == "customer_segmentation_uber":
900
  return pd.DataFrame(
901
  {
902
  "monetary_uber": [
 
964
  ],
965
  }
966
  )
967
+ elif formated_dataset_name == "customer_segmentation_walgreens":
968
  return pd.DataFrame(
969
  {
970
  "monetary_walgreens": [
 
1032
  ],
1033
  }
1034
  )
1035
+ elif formated_dataset_name == "customer_segmentation_walmart":
1036
  return pd.DataFrame(
1037
  {
1038
  "monetary_walmart": [