Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,14 @@ import pandas as pd
|
|
7 |
import requests
|
8 |
|
9 |
available_datasets = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"Demographics",
|
11 |
-
"DoorDash Customer Segmentation",
|
12 |
-
"Personal Care and Lifestyle Category Propensity",
|
13 |
-
"Quick Service Restaurant (QSR) Brand Propensity",
|
14 |
-
"Technology Brand Propensity",
|
15 |
-
"Uber Customer Segmentation",
|
16 |
-
"Walgreens Customer Segmentation",
|
17 |
-
"Walmart Customer Segmentation",
|
18 |
]
|
19 |
|
20 |
default_dataset = "Demographics"
|
@@ -560,7 +560,7 @@ def load_dataset(dataset):
|
|
560 |
],
|
561 |
}
|
562 |
)
|
563 |
-
elif formated_dataset_name == "
|
564 |
return pd.DataFrame(
|
565 |
{
|
566 |
"monetary_doordash": [
|
@@ -628,7 +628,7 @@ def load_dataset(dataset):
|
|
628 |
],
|
629 |
}
|
630 |
)
|
631 |
-
elif formated_dataset_name == "
|
632 |
return pd.DataFrame(
|
633 |
{
|
634 |
"category_propensity_beauty_products": [
|
@@ -717,7 +717,7 @@ def load_dataset(dataset):
|
|
717 |
],
|
718 |
}
|
719 |
)
|
720 |
-
elif formated_dataset_name == "
|
721 |
return pd.DataFrame(
|
722 |
{
|
723 |
"brand_propensity_burger_king": [
|
@@ -807,7 +807,7 @@ def load_dataset(dataset):
|
|
807 |
}
|
808 |
)
|
809 |
|
810 |
-
elif formated_dataset_name == "
|
811 |
return pd.DataFrame(
|
812 |
{
|
813 |
"brand_propensity_apple": [
|
@@ -896,7 +896,7 @@ def load_dataset(dataset):
|
|
896 |
],
|
897 |
}
|
898 |
)
|
899 |
-
elif formated_dataset_name == "
|
900 |
return pd.DataFrame(
|
901 |
{
|
902 |
"monetary_uber": [
|
@@ -964,7 +964,7 @@ def load_dataset(dataset):
|
|
964 |
],
|
965 |
}
|
966 |
)
|
967 |
-
elif formated_dataset_name == "
|
968 |
return pd.DataFrame(
|
969 |
{
|
970 |
"monetary_walgreens": [
|
@@ -1032,7 +1032,7 @@ def load_dataset(dataset):
|
|
1032 |
],
|
1033 |
}
|
1034 |
)
|
1035 |
-
elif formated_dataset_name == "
|
1036 |
return pd.DataFrame(
|
1037 |
{
|
1038 |
"monetary_walmart": [
|
|
|
7 |
import requests
|
8 |
|
9 |
available_datasets = [
|
10 |
+
"Brand Propensity Technology",
|
11 |
+
"Brand Propensity Quick Service Restaurant (QSR)",
|
12 |
+
"Category Propensity Personal Care & Lifestyle",
|
13 |
+
"Customer Segmentation Doordash",
|
14 |
+
"Customer Segmentation Uber",
|
15 |
+
"Customer Segmentation Walgreens",
|
16 |
+
"Customer Segmentation Walmart",
|
17 |
"Demographics",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
]
|
19 |
|
20 |
default_dataset = "Demographics"
|
|
|
560 |
],
|
561 |
}
|
562 |
)
|
563 |
+
elif formated_dataset_name == "customer_segmentation_doordash":
|
564 |
return pd.DataFrame(
|
565 |
{
|
566 |
"monetary_doordash": [
|
|
|
628 |
],
|
629 |
}
|
630 |
)
|
631 |
+
elif formated_dataset_name == "category_propensity_personal_care_&_lifestyle":
|
632 |
return pd.DataFrame(
|
633 |
{
|
634 |
"category_propensity_beauty_products": [
|
|
|
717 |
],
|
718 |
}
|
719 |
)
|
720 |
+
elif formated_dataset_name == "brand_propensity_quick_service_restaurant_(qsr)":
|
721 |
return pd.DataFrame(
|
722 |
{
|
723 |
"brand_propensity_burger_king": [
|
|
|
807 |
}
|
808 |
)
|
809 |
|
810 |
+
elif formated_dataset_name == "brand_propensity_technology":
|
811 |
return pd.DataFrame(
|
812 |
{
|
813 |
"brand_propensity_apple": [
|
|
|
896 |
],
|
897 |
}
|
898 |
)
|
899 |
+
elif formated_dataset_name == "customer_segmentation_uber":
|
900 |
return pd.DataFrame(
|
901 |
{
|
902 |
"monetary_uber": [
|
|
|
964 |
],
|
965 |
}
|
966 |
)
|
967 |
+
elif formated_dataset_name == "customer_segmentation_walgreens":
|
968 |
return pd.DataFrame(
|
969 |
{
|
970 |
"monetary_walgreens": [
|
|
|
1032 |
],
|
1033 |
}
|
1034 |
)
|
1035 |
+
elif formated_dataset_name == "customer_segmentation_walmart":
|
1036 |
return pd.DataFrame(
|
1037 |
{
|
1038 |
"monetary_walmart": [
|