Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, Dict, List, Optional, Set, Tuple, Type, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class LoRALinearLayer(nn.Module): | |
def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None): | |
super().__init__() | |
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) | |
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) | |
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. | |
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning | |
self.network_alpha = network_alpha | |
self.rank = rank | |
self.out_features = out_features | |
self.in_features = in_features | |
nn.init.normal_(self.down.weight, std=1 / rank) | |
nn.init.zeros_(self.up.weight) | |
def forward(self, hidden_states): | |
orig_dtype = hidden_states.dtype | |
dtype = self.down.weight.dtype | |
down_hidden_states = self.down(hidden_states.to(dtype)) | |
up_hidden_states = self.up(down_hidden_states) | |
if self.network_alpha is not None: | |
up_hidden_states *= self.network_alpha / self.rank | |
return up_hidden_states.to(orig_dtype) | |
class LoRAConv2dLayer(nn.Module): | |
def __init__( | |
self, in_features, out_features, rank=4, kernel_size=(1, 1), stride=(1, 1), padding=0, network_alpha=None | |
): | |
super().__init__() | |
self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) | |
# according to the official kohya_ss trainer kernel_size are always fixed for the up layer | |
# # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129 | |
self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. | |
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning | |
self.network_alpha = network_alpha | |
self.rank = rank | |
nn.init.normal_(self.down.weight, std=1 / rank) | |
nn.init.zeros_(self.up.weight) | |
def forward(self, hidden_states): | |
orig_dtype = hidden_states.dtype | |
dtype = self.down.weight.dtype | |
down_hidden_states = self.down(hidden_states.to(dtype)) | |
up_hidden_states = self.up(down_hidden_states) | |
if self.network_alpha is not None: | |
up_hidden_states *= self.network_alpha / self.rank | |
return up_hidden_states.to(orig_dtype) | |
class LoRACompatibleConv(nn.Conv2d): | |
""" | |
A convolutional layer that can be used with LoRA. | |
""" | |
def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, scale: float = 1.0, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.lora_layer = lora_layer | |
self.scale = scale | |
def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]): | |
self.lora_layer = lora_layer | |
def _fuse_lora(self, lora_scale=1.0): | |
if self.lora_layer is None: | |
return | |
dtype, device = self.weight.data.dtype, self.weight.data.device | |
w_orig = self.weight.data.float() | |
w_up = self.lora_layer.up.weight.data.float() | |
w_down = self.lora_layer.down.weight.data.float() | |
if self.lora_layer.network_alpha is not None: | |
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank | |
fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1)) | |
fusion = fusion.reshape((w_orig.shape)) | |
fused_weight = w_orig + (lora_scale * fusion) | |
self.weight.data = fused_weight.to(device=device, dtype=dtype) | |
# we can drop the lora layer now | |
self.lora_layer = None | |
# offload the up and down matrices to CPU to not blow the memory | |
self.w_up = w_up.cpu() | |
self.w_down = w_down.cpu() | |
self._lora_scale = lora_scale | |
def _unfuse_lora(self): | |
if not (hasattr(self, "w_up") and hasattr(self, "w_down")): | |
return | |
fused_weight = self.weight.data | |
dtype, device = fused_weight.data.dtype, fused_weight.data.device | |
self.w_up = self.w_up.to(device=device).float() | |
self.w_down = self.w_down.to(device).float() | |
fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1)) | |
fusion = fusion.reshape((fused_weight.shape)) | |
unfused_weight = fused_weight.float() - (self._lora_scale * fusion) | |
self.weight.data = unfused_weight.to(device=device, dtype=dtype) | |
self.w_up = None | |
self.w_down = None | |
def forward(self, hidden_states, scale: float = None): | |
if scale is None: | |
scale = self.scale | |
if self.lora_layer is None: | |
# make sure to the functional Conv2D function as otherwise torch.compile's graph will break | |
# see: https://github.com/huggingface/diffusers/pull/4315 | |
return F.conv2d( | |
hidden_states, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups | |
) | |
else: | |
return super().forward(hidden_states) + (scale * self.lora_layer(hidden_states)) | |
class LoRACompatibleLinear(nn.Linear): | |
""" | |
A Linear layer that can be used with LoRA. | |
""" | |
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, scale: float = 1.0, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.lora_layer = lora_layer | |
self.scale = scale | |
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]): | |
self.lora_layer = lora_layer | |
def _fuse_lora(self, lora_scale=1.0): | |
if self.lora_layer is None: | |
return | |
dtype, device = self.weight.data.dtype, self.weight.data.device | |
w_orig = self.weight.data.float() | |
w_up = self.lora_layer.up.weight.data.float() | |
w_down = self.lora_layer.down.weight.data.float() | |
if self.lora_layer.network_alpha is not None: | |
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank | |
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) | |
self.weight.data = fused_weight.to(device=device, dtype=dtype) | |
# we can drop the lora layer now | |
self.lora_layer = None | |
# offload the up and down matrices to CPU to not blow the memory | |
self.w_up = w_up.cpu() | |
self.w_down = w_down.cpu() | |
self._lora_scale = lora_scale | |
def _unfuse_lora(self): | |
if not (hasattr(self, "w_up") and hasattr(self, "w_down")): | |
return | |
fused_weight = self.weight.data | |
dtype, device = fused_weight.dtype, fused_weight.device | |
w_up = self.w_up.to(device=device).float() | |
w_down = self.w_down.to(device).float() | |
unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) | |
self.weight.data = unfused_weight.to(device=device, dtype=dtype) | |
self.w_up = None | |
self.w_down = None | |
def forward(self, hidden_states, scale: float = None): | |
if scale is None: | |
scale = self.scale | |
if self.lora_layer is None: | |
out = super().forward(hidden_states) | |
return out | |
else: | |
out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states)) | |
return out | |
def _find_children( | |
model, | |
search_class: List[Type[nn.Module]] = [nn.Linear], | |
): | |
""" | |
Find all modules of a certain class (or union of classes). | |
Returns all matching modules, along with the parent of those moduless and the | |
names they are referenced by. | |
""" | |
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear | |
for parent in model.modules(): | |
for name, module in parent.named_children(): | |
if any([isinstance(module, _class) for _class in search_class]): | |
yield parent, name, module | |
def _find_modules_v2( | |
model, | |
ancestor_class: Optional[Set[str]] = None, | |
search_class: List[Type[nn.Module]] = [nn.Linear], | |
exclude_children_of: Optional[List[Type[nn.Module]]] = [ | |
LoRACompatibleLinear, | |
LoRACompatibleConv, | |
LoRALinearLayer, | |
LoRAConv2dLayer, | |
], | |
): | |
""" | |
Find all modules of a certain class (or union of classes) that are direct or | |
indirect descendants of other modules of a certain class (or union of classes). | |
Returns all matching modules, along with the parent of those moduless and the | |
names they are referenced by. | |
""" | |
# Get the targets we should replace all linears under | |
if ancestor_class is not None: | |
ancestors = (module for module in model.modules() if module.__class__.__name__ in ancestor_class) | |
else: | |
# this, incase you want to naively iterate over all modules. | |
ancestors = [module for module in model.modules()] | |
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear | |
for ancestor in ancestors: | |
for fullname, module in ancestor.named_modules(): | |
if any([isinstance(module, _class) for _class in search_class]): | |
# Find the direct parent if this is a descendant, not a child, of target | |
*path, name = fullname.split(".") | |
parent = ancestor | |
flag = False | |
while path: | |
try: | |
parent = parent.get_submodule(path.pop(0)) | |
except: | |
flag = True | |
break | |
if flag: | |
continue | |
# Skip this linear if it's a child of a LoraInjectedLinear | |
if exclude_children_of and any([isinstance(parent, _class) for _class in exclude_children_of]): | |
continue | |
# Otherwise, yield it | |
yield parent, name, module | |
_find_modules = _find_modules_v2 | |
def inject_trainable_lora_extended( | |
model: nn.Module, | |
target_replace_module: Set[str] = None, | |
rank: int = 4, | |
scale: float = 1.0, | |
): | |
for _module, name, _child_module in _find_modules( | |
model, target_replace_module, search_class=[nn.Linear, nn.Conv2d] | |
): | |
if _child_module.__class__ == nn.Linear: | |
weight = _child_module.weight | |
bias = _child_module.bias | |
lora_layer = LoRALinearLayer( | |
in_features=_child_module.in_features, | |
out_features=_child_module.out_features, | |
rank=rank, | |
) | |
_tmp = ( | |
LoRACompatibleLinear( | |
_child_module.in_features, | |
_child_module.out_features, | |
lora_layer=lora_layer, | |
scale=scale, | |
) | |
.to(weight.dtype) | |
.to(weight.device) | |
) | |
_tmp.weight = weight | |
if bias is not None: | |
_tmp.bias = bias | |
elif _child_module.__class__ == nn.Conv2d: | |
weight = _child_module.weight | |
bias = _child_module.bias | |
lora_layer = LoRAConv2dLayer( | |
in_features=_child_module.in_channels, | |
out_features=_child_module.out_channels, | |
rank=rank, | |
kernel_size=_child_module.kernel_size, | |
stride=_child_module.stride, | |
padding=_child_module.padding, | |
) | |
_tmp = ( | |
LoRACompatibleConv( | |
_child_module.in_channels, | |
_child_module.out_channels, | |
kernel_size=_child_module.kernel_size, | |
stride=_child_module.stride, | |
padding=_child_module.padding, | |
lora_layer=lora_layer, | |
scale=scale, | |
) | |
.to(weight.dtype) | |
.to(weight.device) | |
) | |
_tmp.weight = weight | |
if bias is not None: | |
_tmp.bias = bias | |
else: | |
continue | |
_module._modules[name] = _tmp | |
# print('injecting lora layer to', _module, name) | |
return | |
def update_lora_scale( | |
model: nn.Module, | |
target_module: Set[str] = None, | |
scale: float = 1.0, | |
): | |
for _module, name, _child_module in _find_modules( | |
model, target_module, search_class=[LoRACompatibleLinear, LoRACompatibleConv] | |
): | |
_child_module.scale = scale | |
return | |