File size: 13,431 Bytes
e276be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, Dict, List, Optional, Set, Tuple, Type, Union

import torch
import torch.nn.functional as F
from torch import nn


class LoRALinearLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None):
        super().__init__()

        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank
        self.out_features = out_features
        self.in_features = in_features

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRAConv2dLayer(nn.Module):
    def __init__(
        self, in_features, out_features, rank=4, kernel_size=(1, 1), stride=(1, 1), padding=0, network_alpha=None
    ):
        super().__init__()

        self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
        # according to the official kohya_ss trainer kernel_size are always fixed for the up layer
        # # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129
        self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False)

        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRACompatibleConv(nn.Conv2d):
    """
    A convolutional layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, scale: float = 1.0, **kwargs):
        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer
        self.scale = scale

    def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
        self.lora_layer = lora_layer

    def _fuse_lora(self, lora_scale=1.0):
        if self.lora_layer is None:
            return

        dtype, device = self.weight.data.dtype, self.weight.data.device

        w_orig = self.weight.data.float()
        w_up = self.lora_layer.up.weight.data.float()
        w_down = self.lora_layer.down.weight.data.float()

        if self.lora_layer.network_alpha is not None:
            w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank

        fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1))
        fusion = fusion.reshape((w_orig.shape))
        fused_weight = w_orig + (lora_scale * fusion)
        self.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self._lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (hasattr(self, "w_up") and hasattr(self, "w_down")):
            return

        fused_weight = self.weight.data
        dtype, device = fused_weight.data.dtype, fused_weight.data.device

        self.w_up = self.w_up.to(device=device).float()
        self.w_down = self.w_down.to(device).float()

        fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1))
        fusion = fusion.reshape((fused_weight.shape))
        unfused_weight = fused_weight.float() - (self._lora_scale * fusion)
        self.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, hidden_states, scale: float = None):
        if scale is None:
            scale = self.scale
        if self.lora_layer is None:
            # make sure to the functional Conv2D function as otherwise torch.compile's graph will break
            # see: https://github.com/huggingface/diffusers/pull/4315
            return F.conv2d(
                hidden_states, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
            )
        else:
            return super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))


class LoRACompatibleLinear(nn.Linear):
    """
    A Linear layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, scale: float = 1.0, **kwargs):
        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer
        self.scale = scale

    def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
        self.lora_layer = lora_layer

    def _fuse_lora(self, lora_scale=1.0):
        if self.lora_layer is None:
            return

        dtype, device = self.weight.data.dtype, self.weight.data.device

        w_orig = self.weight.data.float()
        w_up = self.lora_layer.up.weight.data.float()
        w_down = self.lora_layer.down.weight.data.float()

        if self.lora_layer.network_alpha is not None:
            w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank

        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
        self.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self._lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (hasattr(self, "w_up") and hasattr(self, "w_down")):
            return

        fused_weight = self.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

        unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
        self.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, hidden_states, scale: float = None):
        if scale is None:
            scale = self.scale
        if self.lora_layer is None:
            out = super().forward(hidden_states)
            return out
        else:
            out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
            return out


def _find_children(
    model,
    search_class: List[Type[nn.Module]] = [nn.Linear],
):
    """
    Find all modules of a certain class (or union of classes).

    Returns all matching modules, along with the parent of those moduless and the
    names they are referenced by.
    """
    # For each target find every linear_class module that isn't a child of a LoraInjectedLinear
    for parent in model.modules():
        for name, module in parent.named_children():
            if any([isinstance(module, _class) for _class in search_class]):
                yield parent, name, module


def _find_modules_v2(
    model,
    ancestor_class: Optional[Set[str]] = None,
    search_class: List[Type[nn.Module]] = [nn.Linear],
    exclude_children_of: Optional[List[Type[nn.Module]]] = [
        LoRACompatibleLinear,
        LoRACompatibleConv,
        LoRALinearLayer,
        LoRAConv2dLayer,
    ],
):
    """
    Find all modules of a certain class (or union of classes) that are direct or
    indirect descendants of other modules of a certain class (or union of classes).

    Returns all matching modules, along with the parent of those moduless and the
    names they are referenced by.
    """

    # Get the targets we should replace all linears under
    if ancestor_class is not None:
        ancestors = (module for module in model.modules() if module.__class__.__name__ in ancestor_class)
    else:
        # this, incase you want to naively iterate over all modules.
        ancestors = [module for module in model.modules()]

    # For each target find every linear_class module that isn't a child of a LoraInjectedLinear
    for ancestor in ancestors:
        for fullname, module in ancestor.named_modules():
            if any([isinstance(module, _class) for _class in search_class]):
                # Find the direct parent if this is a descendant, not a child, of target
                *path, name = fullname.split(".")
                parent = ancestor
                flag = False
                while path:
                    try:
                        parent = parent.get_submodule(path.pop(0))
                    except:
                        flag = True
                        break
                if flag:
                    continue
                # Skip this linear if it's a child of a LoraInjectedLinear
                if exclude_children_of and any([isinstance(parent, _class) for _class in exclude_children_of]):
                    continue
                # Otherwise, yield it
                yield parent, name, module


_find_modules = _find_modules_v2


def inject_trainable_lora_extended(
    model: nn.Module,
    target_replace_module: Set[str] = None,
    rank: int = 4,
    scale: float = 1.0,
):
    for _module, name, _child_module in _find_modules(
        model, target_replace_module, search_class=[nn.Linear, nn.Conv2d]
    ):
        if _child_module.__class__ == nn.Linear:
            weight = _child_module.weight
            bias = _child_module.bias
            lora_layer = LoRALinearLayer(
                in_features=_child_module.in_features,
                out_features=_child_module.out_features,
                rank=rank,
            )
            _tmp = (
                LoRACompatibleLinear(
                    _child_module.in_features,
                    _child_module.out_features,
                    lora_layer=lora_layer,
                    scale=scale,
                )
                .to(weight.dtype)
                .to(weight.device)
            )
            _tmp.weight = weight
            if bias is not None:
                _tmp.bias = bias
        elif _child_module.__class__ == nn.Conv2d:
            weight = _child_module.weight
            bias = _child_module.bias
            lora_layer = LoRAConv2dLayer(
                in_features=_child_module.in_channels,
                out_features=_child_module.out_channels,
                rank=rank,
                kernel_size=_child_module.kernel_size,
                stride=_child_module.stride,
                padding=_child_module.padding,
            )
            _tmp = (
                LoRACompatibleConv(
                    _child_module.in_channels,
                    _child_module.out_channels,
                    kernel_size=_child_module.kernel_size,
                    stride=_child_module.stride,
                    padding=_child_module.padding,
                    lora_layer=lora_layer,
                    scale=scale,
                )
                .to(weight.dtype)
                .to(weight.device)
            )
            _tmp.weight = weight
            if bias is not None:
                _tmp.bias = bias
        else:
            continue

        _module._modules[name] = _tmp
        # print('injecting lora layer to', _module, name)

    return


def update_lora_scale(
    model: nn.Module,
    target_module: Set[str] = None,
    scale: float = 1.0,
):
    for _module, name, _child_module in _find_modules(
        model, target_module, search_class=[LoRACompatibleLinear, LoRACompatibleConv]
    ):
        _child_module.scale = scale

    return