Upload neat\visualize.py with huggingface_hub
Browse files- neat//visualize.py +206 -0
neat//visualize.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Visualization utilities for NEAT networks and training progress."""
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from typing import List, Dict, Any
|
| 7 |
+
import imageio
|
| 8 |
+
from IPython.display import HTML
|
| 9 |
+
from neat.network import Network
|
| 10 |
+
from neat.genome import Genome
|
| 11 |
+
|
| 12 |
+
def draw_network(network: Network, save_path: str = None) -> None:
|
| 13 |
+
"""Draw a neural network visualization using networkx and matplotlib.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
network: The network to visualize
|
| 17 |
+
save_path: Optional path to save the visualization
|
| 18 |
+
"""
|
| 19 |
+
# Create directed graph
|
| 20 |
+
G = nx.DiGraph()
|
| 21 |
+
|
| 22 |
+
# Track node types and positions
|
| 23 |
+
node_types = {}
|
| 24 |
+
node_positions = {}
|
| 25 |
+
|
| 26 |
+
# Collect all unique nodes from connections
|
| 27 |
+
all_nodes = set()
|
| 28 |
+
for conn in network.connection_genes:
|
| 29 |
+
if conn.enabled:
|
| 30 |
+
all_nodes.add(conn.source)
|
| 31 |
+
all_nodes.add(conn.target)
|
| 32 |
+
|
| 33 |
+
# Calculate layout parameters
|
| 34 |
+
layer_spacing = 2.0
|
| 35 |
+
|
| 36 |
+
# Add input nodes (leftmost layer)
|
| 37 |
+
input_nodes = set(range(network.input_size))
|
| 38 |
+
input_y = np.linspace(-1, 1, len(input_nodes))
|
| 39 |
+
for i, node in enumerate(sorted(input_nodes)):
|
| 40 |
+
node_id = str(node)
|
| 41 |
+
node_types[node_id] = 'input'
|
| 42 |
+
node_positions[node_id] = np.array([0, input_y[i]])
|
| 43 |
+
G.add_node(node_id)
|
| 44 |
+
all_nodes.discard(node) # Remove from remaining nodes
|
| 45 |
+
|
| 46 |
+
# Add output nodes (rightmost layer)
|
| 47 |
+
output_start = len(network.node_genes) - network.output_size
|
| 48 |
+
output_nodes = set(range(output_start, len(network.node_genes)))
|
| 49 |
+
output_y = np.linspace(-1, 1, len(output_nodes))
|
| 50 |
+
for i, node in enumerate(sorted(output_nodes)):
|
| 51 |
+
node_id = str(node)
|
| 52 |
+
node_types[node_id] = 'output'
|
| 53 |
+
node_positions[node_id] = np.array([layer_spacing, output_y[i]])
|
| 54 |
+
G.add_node(node_id)
|
| 55 |
+
all_nodes.discard(node)
|
| 56 |
+
|
| 57 |
+
# Add hidden nodes (middle layer)
|
| 58 |
+
hidden_nodes = all_nodes # Remaining nodes are hidden
|
| 59 |
+
if hidden_nodes:
|
| 60 |
+
hidden_y = np.linspace(-1, 1, len(hidden_nodes))
|
| 61 |
+
for i, node in enumerate(sorted(hidden_nodes)):
|
| 62 |
+
node_id = str(node)
|
| 63 |
+
node_types[node_id] = 'hidden'
|
| 64 |
+
node_positions[node_id] = np.array([layer_spacing/2, hidden_y[i]])
|
| 65 |
+
G.add_node(node_id)
|
| 66 |
+
|
| 67 |
+
# Add connections
|
| 68 |
+
for conn in network.connection_genes:
|
| 69 |
+
if conn.enabled:
|
| 70 |
+
G.add_edge(str(conn.source), str(conn.target), weight=conn.weight)
|
| 71 |
+
|
| 72 |
+
# Draw the network
|
| 73 |
+
plt.figure(figsize=(8, 6))
|
| 74 |
+
|
| 75 |
+
# Draw nodes
|
| 76 |
+
for node, (x, y) in node_positions.items():
|
| 77 |
+
node_type = node_types[node]
|
| 78 |
+
if node_type == 'input':
|
| 79 |
+
color = 'lightblue'
|
| 80 |
+
elif node_type == 'hidden':
|
| 81 |
+
color = 'gray'
|
| 82 |
+
else: # output
|
| 83 |
+
color = 'lightgreen'
|
| 84 |
+
plt.scatter(x, y, c=color, s=500, zorder=2)
|
| 85 |
+
plt.text(x, y, node, horizontalalignment='center', verticalalignment='center')
|
| 86 |
+
|
| 87 |
+
# Draw edges
|
| 88 |
+
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
|
| 89 |
+
pos = node_positions
|
| 90 |
+
nx.draw_networkx_edges(G, pos, edge_color='gray',
|
| 91 |
+
width=1, alpha=0.5,
|
| 92 |
+
arrows=True, arrowsize=10,
|
| 93 |
+
edge_cmap=plt.cm.RdYlBu, edge_vmin=-1, edge_vmax=1,
|
| 94 |
+
connectionstyle="arc3,rad=0.2")
|
| 95 |
+
|
| 96 |
+
plt.title("Neural Network Architecture")
|
| 97 |
+
plt.axis('equal')
|
| 98 |
+
plt.axis('off')
|
| 99 |
+
|
| 100 |
+
if save_path:
|
| 101 |
+
plt.savefig(save_path, bbox_inches='tight', dpi=300)
|
| 102 |
+
plt.close()
|
| 103 |
+
else:
|
| 104 |
+
plt.show()
|
| 105 |
+
|
| 106 |
+
def plot_training_history(history: Dict[str, List[float]], save_path: str = None) -> None:
|
| 107 |
+
"""Plot training metrics over generations.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
history: Dictionary containing lists of metrics per generation
|
| 111 |
+
save_path: Optional path to save the plot
|
| 112 |
+
"""
|
| 113 |
+
plt.figure(figsize=(12, 8))
|
| 114 |
+
|
| 115 |
+
# Plot fitness metrics
|
| 116 |
+
if 'best_fitness' in history:
|
| 117 |
+
plt.plot(history['best_fitness'], label='Best Fitness', color='green')
|
| 118 |
+
if 'avg_fitness' in history:
|
| 119 |
+
plt.plot(history['avg_fitness'], label='Average Fitness', color='blue')
|
| 120 |
+
|
| 121 |
+
# Plot species count if available
|
| 122 |
+
if 'species_count' in history:
|
| 123 |
+
ax2 = plt.twinx()
|
| 124 |
+
ax2.plot(history['species_count'], label='Species Count', color='red', linestyle='--')
|
| 125 |
+
ax2.set_ylabel('Number of Species')
|
| 126 |
+
|
| 127 |
+
plt.xlabel('Generation')
|
| 128 |
+
plt.ylabel('Fitness')
|
| 129 |
+
plt.title('Training Progress')
|
| 130 |
+
plt.legend()
|
| 131 |
+
|
| 132 |
+
if save_path:
|
| 133 |
+
plt.savefig(save_path, bbox_inches='tight')
|
| 134 |
+
plt.close()
|
| 135 |
+
else:
|
| 136 |
+
plt.show()
|
| 137 |
+
|
| 138 |
+
def create_gameplay_gif(frames: List[np.ndarray], output_path: str, fps: int = 30) -> None:
|
| 139 |
+
"""Create a GIF from gameplay frames.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
frames: List of frames as numpy arrays
|
| 143 |
+
output_path: Path to save the GIF
|
| 144 |
+
fps: Frames per second for the GIF
|
| 145 |
+
"""
|
| 146 |
+
# Ensure output directory exists
|
| 147 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
| 148 |
+
|
| 149 |
+
# Save frames as GIF
|
| 150 |
+
imageio.mimsave(output_path, frames, fps=fps)
|
| 151 |
+
|
| 152 |
+
def plot_species_complexity(species_stats: List[Dict[str, Any]], save_path: str = None) -> None:
|
| 153 |
+
"""Plot the complexity of species over generations.
|
| 154 |
+
|
| 155 |
+
Args:
|
| 156 |
+
species_stats: List of dictionaries containing species statistics per generation
|
| 157 |
+
save_path: Optional path to save the plot
|
| 158 |
+
"""
|
| 159 |
+
plt.figure(figsize=(12, 8))
|
| 160 |
+
|
| 161 |
+
generations = range(len(species_stats))
|
| 162 |
+
avg_nodes = [stats['avg_nodes'] for stats in species_stats]
|
| 163 |
+
avg_connections = [stats['avg_connections'] for stats in species_stats]
|
| 164 |
+
|
| 165 |
+
plt.plot(generations, avg_nodes, label='Average Nodes', color='blue')
|
| 166 |
+
plt.plot(generations, avg_connections, label='Average Connections', color='green')
|
| 167 |
+
|
| 168 |
+
plt.xlabel('Generation')
|
| 169 |
+
plt.ylabel('Count')
|
| 170 |
+
plt.title('Network Complexity Over Time')
|
| 171 |
+
plt.legend()
|
| 172 |
+
|
| 173 |
+
if save_path:
|
| 174 |
+
plt.savefig(save_path, bbox_inches='tight')
|
| 175 |
+
plt.close()
|
| 176 |
+
else:
|
| 177 |
+
plt.show()
|
| 178 |
+
|
| 179 |
+
def plot_activation_distribution(genomes: List[Genome], save_path: str = None) -> None:
|
| 180 |
+
"""Plot the distribution of activation functions across the population.
|
| 181 |
+
|
| 182 |
+
Args:
|
| 183 |
+
genomes: List of genomes to analyze
|
| 184 |
+
save_path: Optional path to save the plot
|
| 185 |
+
"""
|
| 186 |
+
activation_counts = {}
|
| 187 |
+
|
| 188 |
+
# Count activation functions
|
| 189 |
+
for genome in genomes:
|
| 190 |
+
for node in genome.nodes.values():
|
| 191 |
+
activation_name = node.activation.__name__ if hasattr(node.activation, '__name__') else str(node.activation)
|
| 192 |
+
activation_counts[activation_name] = activation_counts.get(activation_name, 0) + 1
|
| 193 |
+
|
| 194 |
+
# Create bar plot
|
| 195 |
+
plt.figure(figsize=(10, 6))
|
| 196 |
+
plt.bar(activation_counts.keys(), activation_counts.values())
|
| 197 |
+
plt.xticks(rotation=45)
|
| 198 |
+
plt.xlabel('Activation Function')
|
| 199 |
+
plt.ylabel('Count')
|
| 200 |
+
plt.title('Distribution of Activation Functions')
|
| 201 |
+
|
| 202 |
+
if save_path:
|
| 203 |
+
plt.savefig(save_path, bbox_inches='tight')
|
| 204 |
+
plt.close()
|
| 205 |
+
else:
|
| 206 |
+
plt.show()
|