Upload neat\visualization.py with huggingface_hub
Browse files- neat//visualization.py +183 -0
neat//visualization.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Visualization utilities for NEAT networks."""
|
| 2 |
+
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import networkx as nx
|
| 5 |
+
import numpy as np
|
| 6 |
+
import jax.numpy as jnp
|
| 7 |
+
from typing import List, Dict, Any
|
| 8 |
+
from .network import Network
|
| 9 |
+
|
| 10 |
+
def plot_network_structure(network: Network, title: str = "Network Structure",
|
| 11 |
+
save_path: str = None, show: bool = True) -> None:
|
| 12 |
+
"""Plot network structure using networkx.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
network: Network to visualize
|
| 16 |
+
title: Plot title
|
| 17 |
+
save_path: Path to save plot to
|
| 18 |
+
show: Whether to display plot
|
| 19 |
+
"""
|
| 20 |
+
# Create graph
|
| 21 |
+
G = nx.DiGraph()
|
| 22 |
+
|
| 23 |
+
# Add nodes
|
| 24 |
+
input_nodes = network.get_input_nodes()
|
| 25 |
+
hidden_nodes = network.get_hidden_nodes()
|
| 26 |
+
output_nodes = network.get_output_nodes()
|
| 27 |
+
|
| 28 |
+
# Position nodes in layers
|
| 29 |
+
pos = {}
|
| 30 |
+
|
| 31 |
+
# Input layer
|
| 32 |
+
for i, node in enumerate(input_nodes):
|
| 33 |
+
G.add_node(node, layer='input')
|
| 34 |
+
pos[node] = (0, (i - len(input_nodes)/2) / max(1, len(input_nodes)-1))
|
| 35 |
+
|
| 36 |
+
# Hidden layer
|
| 37 |
+
for i, node in enumerate(hidden_nodes):
|
| 38 |
+
G.add_node(node, layer='hidden')
|
| 39 |
+
pos[node] = (1, (i - len(hidden_nodes)/2) / max(1, len(hidden_nodes)-1))
|
| 40 |
+
|
| 41 |
+
# Output layer
|
| 42 |
+
for i, node in enumerate(output_nodes):
|
| 43 |
+
G.add_node(node, layer='output')
|
| 44 |
+
pos[node] = (2, (i - len(output_nodes)/2) / max(1, len(output_nodes)-1))
|
| 45 |
+
|
| 46 |
+
# Add edges with weights
|
| 47 |
+
connections = network.get_connections()
|
| 48 |
+
for src, dst, weight in connections:
|
| 49 |
+
# Convert JAX array to NumPy float
|
| 50 |
+
if isinstance(weight, jnp.ndarray):
|
| 51 |
+
weight = float(weight)
|
| 52 |
+
G.add_edge(src, dst, weight=weight)
|
| 53 |
+
|
| 54 |
+
# Draw network
|
| 55 |
+
plt.figure(figsize=(8, 6))
|
| 56 |
+
|
| 57 |
+
# Draw nodes
|
| 58 |
+
node_colors = ['lightblue' if G.nodes[n]['layer'] == 'input' else
|
| 59 |
+
'lightgreen' if G.nodes[n]['layer'] == 'hidden' else
|
| 60 |
+
'salmon' for n in G.nodes()]
|
| 61 |
+
nx.draw_networkx_nodes(G, pos, node_color=node_colors)
|
| 62 |
+
|
| 63 |
+
# Draw edges with weights as colors
|
| 64 |
+
edges = G.edges()
|
| 65 |
+
weights = [G[u][v]['weight'] for u, v in edges]
|
| 66 |
+
|
| 67 |
+
# Normalize weights for coloring
|
| 68 |
+
max_weight = max(abs(min(weights)), abs(max(weights)))
|
| 69 |
+
if max_weight > 0:
|
| 70 |
+
norm_weights = [(w + max_weight)/(2*max_weight) for w in weights]
|
| 71 |
+
else:
|
| 72 |
+
norm_weights = [0.5] * len(weights) # Default to middle color if all weights are 0
|
| 73 |
+
|
| 74 |
+
nx.draw_networkx_edges(G, pos, edge_color=norm_weights,
|
| 75 |
+
edge_cmap=plt.cm.RdYlBu, width=2)
|
| 76 |
+
|
| 77 |
+
# Add labels
|
| 78 |
+
labels = {n: str(n) for n in G.nodes()}
|
| 79 |
+
nx.draw_networkx_labels(G, pos, labels)
|
| 80 |
+
|
| 81 |
+
plt.title(title)
|
| 82 |
+
plt.axis('off')
|
| 83 |
+
|
| 84 |
+
if save_path:
|
| 85 |
+
plt.savefig(save_path)
|
| 86 |
+
|
| 87 |
+
if show:
|
| 88 |
+
plt.show()
|
| 89 |
+
else:
|
| 90 |
+
plt.close()
|
| 91 |
+
|
| 92 |
+
def plot_decision_boundary(network: Network, X: np.ndarray, y: np.ndarray,
|
| 93 |
+
title: str = "Decision Boundary",
|
| 94 |
+
save_path: str = None, show: bool = True) -> None:
|
| 95 |
+
"""Plot decision boundary for 2D classification problem.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
network: Trained network
|
| 99 |
+
X: Input data (n_samples, 2)
|
| 100 |
+
y: Labels
|
| 101 |
+
title: Plot title
|
| 102 |
+
save_path: Path to save plot to
|
| 103 |
+
show: Whether to display plot
|
| 104 |
+
"""
|
| 105 |
+
# Convert JAX arrays to NumPy
|
| 106 |
+
if isinstance(X, jnp.ndarray):
|
| 107 |
+
X = np.array(X)
|
| 108 |
+
if isinstance(y, jnp.ndarray):
|
| 109 |
+
y = np.array(y)
|
| 110 |
+
|
| 111 |
+
# Create mesh grid
|
| 112 |
+
h = 0.02 # Step size
|
| 113 |
+
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
| 114 |
+
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
| 115 |
+
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
| 116 |
+
np.arange(y_min, y_max, h))
|
| 117 |
+
|
| 118 |
+
# Make predictions on mesh
|
| 119 |
+
mesh_points = np.c_[xx.ravel(), yy.ravel()]
|
| 120 |
+
Z = network.predict(mesh_points)
|
| 121 |
+
if isinstance(Z, jnp.ndarray):
|
| 122 |
+
Z = np.array(Z)
|
| 123 |
+
Z = Z.reshape(xx.shape)
|
| 124 |
+
|
| 125 |
+
# Plot decision boundary
|
| 126 |
+
plt.figure(figsize=(8, 6))
|
| 127 |
+
plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu_r, alpha=0.3)
|
| 128 |
+
|
| 129 |
+
# Plot training points
|
| 130 |
+
plt.scatter(X[:, 0], X[:, 1], c=y,
|
| 131 |
+
cmap=plt.cm.RdYlBu_r,
|
| 132 |
+
alpha=0.6,
|
| 133 |
+
edgecolors='gray')
|
| 134 |
+
plt.xlim(xx.min(), xx.max())
|
| 135 |
+
plt.ylim(yy.min(), yy.max())
|
| 136 |
+
|
| 137 |
+
plt.title(title)
|
| 138 |
+
|
| 139 |
+
if save_path:
|
| 140 |
+
plt.savefig(save_path)
|
| 141 |
+
|
| 142 |
+
if show:
|
| 143 |
+
plt.show()
|
| 144 |
+
else:
|
| 145 |
+
plt.close()
|
| 146 |
+
|
| 147 |
+
def plot_training_history(history: Dict[str, List[float]],
|
| 148 |
+
title: str = "Training History",
|
| 149 |
+
save_path: str = None, show: bool = True) -> None:
|
| 150 |
+
"""Plot training history metrics.
|
| 151 |
+
|
| 152 |
+
Args:
|
| 153 |
+
history: Dictionary of metrics
|
| 154 |
+
title: Plot title
|
| 155 |
+
save_path: Path to save plot to
|
| 156 |
+
show: Whether to display plot
|
| 157 |
+
"""
|
| 158 |
+
plt.figure(figsize=(10, 6))
|
| 159 |
+
|
| 160 |
+
# Convert JAX arrays to NumPy if needed
|
| 161 |
+
plot_history = {}
|
| 162 |
+
for metric, values in history.items():
|
| 163 |
+
if isinstance(values[0], jnp.ndarray):
|
| 164 |
+
plot_history[metric] = [float(v) for v in values]
|
| 165 |
+
else:
|
| 166 |
+
plot_history[metric] = values
|
| 167 |
+
|
| 168 |
+
for metric, values in plot_history.items():
|
| 169 |
+
plt.plot(values, label=metric)
|
| 170 |
+
|
| 171 |
+
plt.title(title)
|
| 172 |
+
plt.xlabel('Generation')
|
| 173 |
+
plt.ylabel('Value')
|
| 174 |
+
plt.legend()
|
| 175 |
+
plt.grid(True)
|
| 176 |
+
|
| 177 |
+
if save_path:
|
| 178 |
+
plt.savefig(save_path)
|
| 179 |
+
|
| 180 |
+
if show:
|
| 181 |
+
plt.show()
|
| 182 |
+
else:
|
| 183 |
+
plt.close()
|