Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, Optional, Tuple, Any, Union | |
import numpy as np | |
from pydantic import BaseModel, PrivateAttr | |
from uuid import UUID | |
import chromadb.utils.embedding_functions as ef | |
from chromadb.api.types import ( | |
URI, | |
CollectionMetadata, | |
DataLoader, | |
Embedding, | |
Embeddings, | |
Embeddable, | |
Include, | |
Loadable, | |
Metadata, | |
Metadatas, | |
Document, | |
Documents, | |
Image, | |
Images, | |
URIs, | |
Where, | |
IDs, | |
EmbeddingFunction, | |
GetResult, | |
QueryResult, | |
ID, | |
OneOrMany, | |
WhereDocument, | |
maybe_cast_one_to_many_ids, | |
maybe_cast_one_to_many_embedding, | |
maybe_cast_one_to_many_metadata, | |
maybe_cast_one_to_many_document, | |
maybe_cast_one_to_many_image, | |
maybe_cast_one_to_many_uri, | |
validate_ids, | |
validate_include, | |
validate_metadata, | |
validate_metadatas, | |
validate_where, | |
validate_where_document, | |
validate_n_results, | |
validate_embeddings, | |
validate_embedding_function, | |
) | |
import logging | |
logger = logging.getLogger(__name__) | |
if TYPE_CHECKING: | |
from chromadb.api import ServerAPI | |
class Collection(BaseModel): | |
name: str | |
id: UUID | |
metadata: Optional[CollectionMetadata] = None | |
tenant: Optional[str] = None | |
database: Optional[str] = None | |
_client: "ServerAPI" = PrivateAttr() | |
_embedding_function: Optional[EmbeddingFunction[Embeddable]] = PrivateAttr() | |
_data_loader: Optional[DataLoader[Loadable]] = PrivateAttr() | |
def __init__( | |
self, | |
client: "ServerAPI", | |
name: str, | |
id: UUID, | |
embedding_function: Optional[ | |
EmbeddingFunction[Embeddable] | |
] = ef.DefaultEmbeddingFunction(), # type: ignore | |
data_loader: Optional[DataLoader[Loadable]] = None, | |
tenant: Optional[str] = None, | |
database: Optional[str] = None, | |
metadata: Optional[CollectionMetadata] = None, | |
): | |
super().__init__( | |
name=name, metadata=metadata, id=id, tenant=tenant, database=database | |
) | |
self._client = client | |
# Check to make sure the embedding function has the right signature, as defined by the EmbeddingFunction protocol | |
if embedding_function is not None: | |
validate_embedding_function(embedding_function) | |
self._embedding_function = embedding_function | |
self._data_loader = data_loader | |
def __repr__(self) -> str: | |
return f"Collection(name={self.name})" | |
def count(self) -> int: | |
"""The total number of embeddings added to the database | |
Returns: | |
int: The total number of embeddings added to the database | |
""" | |
return self._client._count(collection_id=self.id) | |
def add( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[np.ndarray], | |
] | |
] = None, | |
metadatas: Optional[OneOrMany[Metadata]] = None, | |
documents: Optional[OneOrMany[Document]] = None, | |
images: Optional[OneOrMany[Image]] = None, | |
uris: Optional[OneOrMany[URI]] = None, | |
) -> None: | |
"""Add embeddings to the data store. | |
Args: | |
ids: The ids of the embeddings you wish to add | |
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional. | |
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. | |
documents: The documents to associate with the embeddings. Optional. | |
images: The images to associate with the embeddings. Optional. | |
uris: The uris of the images to associate with the embeddings. Optional. | |
Returns: | |
None | |
Raises: | |
ValueError: If you don't provide either embeddings or documents | |
ValueError: If the length of ids, embeddings, metadatas, or documents don't match | |
ValueError: If you don't provide an embedding function and don't provide embeddings | |
ValueError: If you provide both embeddings and documents | |
ValueError: If you provide an id that already exists | |
""" | |
( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
) = self._validate_embedding_set( | |
ids, embeddings, metadatas, documents, images, uris | |
) | |
# We need to compute the embeddings if they're not provided | |
if embeddings is None: | |
# At this point, we know that one of documents or images are provided from the validation above | |
if documents is not None: | |
embeddings = self._embed(input=documents) | |
elif images is not None: | |
embeddings = self._embed(input=images) | |
else: | |
if uris is None: | |
raise ValueError( | |
"You must provide either embeddings, documents, images, or uris." | |
) | |
if self._data_loader is None: | |
raise ValueError( | |
"You must set a data loader on the collection if loading from URIs." | |
) | |
embeddings = self._embed(self._data_loader(uris)) | |
self._client._add(ids, self.id, embeddings, metadatas, documents, uris) | |
def get( | |
self, | |
ids: Optional[OneOrMany[ID]] = None, | |
where: Optional[Where] = None, | |
limit: Optional[int] = None, | |
offset: Optional[int] = None, | |
where_document: Optional[WhereDocument] = None, | |
include: Include = ["metadatas", "documents"], | |
) -> GetResult: | |
"""Get embeddings and their associate data from the data store. If no ids or where filter is provided returns | |
all embeddings up to limit starting at offset. | |
Args: | |
ids: The ids of the embeddings to get. Optional. | |
where: A Where type dict used to filter results by. E.g. `{"$and": ["color" : "red", "price": {"$gte": 4.20}]}`. Optional. | |
limit: The number of documents to return. Optional. | |
offset: The offset to start returning results from. Useful for paging results with limit. Optional. | |
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional. | |
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional. | |
Returns: | |
GetResult: A GetResult object containing the results. | |
""" | |
valid_where = validate_where(where) if where else None | |
valid_where_document = ( | |
validate_where_document(where_document) if where_document else None | |
) | |
valid_ids = validate_ids(maybe_cast_one_to_many_ids(ids)) if ids else None | |
valid_include = validate_include(include, allow_distances=False) | |
if "data" in include and self._data_loader is None: | |
raise ValueError( | |
"You must set a data loader on the collection if loading from URIs." | |
) | |
# We need to include uris in the result from the API to load datas | |
if "data" in include and "uris" not in include: | |
valid_include.append("uris") | |
get_results = self._client._get( | |
self.id, | |
valid_ids, | |
valid_where, | |
None, | |
limit, | |
offset, | |
where_document=valid_where_document, | |
include=valid_include, | |
) | |
if ( | |
"data" in include | |
and self._data_loader is not None | |
and get_results["uris"] is not None | |
): | |
get_results["data"] = self._data_loader(get_results["uris"]) | |
# Remove URIs from the result if they weren't requested | |
if "uris" not in include: | |
get_results["uris"] = None | |
return get_results | |
def peek(self, limit: int = 10) -> GetResult: | |
"""Get the first few results in the database up to limit | |
Args: | |
limit: The number of results to return. | |
Returns: | |
GetResult: A GetResult object containing the results. | |
""" | |
return self._client._peek(self.id, limit) | |
def query( | |
self, | |
query_embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[np.ndarray], | |
] | |
] = None, | |
query_texts: Optional[OneOrMany[Document]] = None, | |
query_images: Optional[OneOrMany[Image]] = None, | |
query_uris: Optional[OneOrMany[URI]] = None, | |
n_results: int = 10, | |
where: Optional[Where] = None, | |
where_document: Optional[WhereDocument] = None, | |
include: Include = ["metadatas", "documents", "distances"], | |
) -> QueryResult: | |
"""Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts. | |
Args: | |
query_embeddings: The embeddings to get the closes neighbors of. Optional. | |
query_texts: The document texts to get the closes neighbors of. Optional. | |
query_images: The images to get the closes neighbors of. Optional. | |
n_results: The number of neighbors to return for each query_embedding or query_texts. Optional. | |
where: A Where type dict used to filter results by. E.g. `{"$and": ["color" : "red", "price": {"$gte": 4.20}]}`. Optional. | |
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional. | |
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional. | |
Returns: | |
QueryResult: A QueryResult object containing the results. | |
Raises: | |
ValueError: If you don't provide either query_embeddings, query_texts, or query_images | |
ValueError: If you provide both query_embeddings and query_texts | |
ValueError: If you provide both query_embeddings and query_images | |
ValueError: If you provide both query_texts and query_images | |
""" | |
# Users must provide only one of query_embeddings, query_texts, query_images, or query_uris | |
if not ( | |
(query_embeddings is not None) | |
^ (query_texts is not None) | |
^ (query_images is not None) | |
^ (query_uris is not None) | |
): | |
raise ValueError( | |
"You must provide one of query_embeddings, query_texts, query_images, or query_uris." | |
) | |
valid_where = validate_where(where) if where else {} | |
valid_where_document = ( | |
validate_where_document(where_document) if where_document else {} | |
) | |
valid_query_embeddings = ( | |
validate_embeddings( | |
self._normalize_embeddings( | |
maybe_cast_one_to_many_embedding(query_embeddings) | |
) | |
) | |
if query_embeddings is not None | |
else None | |
) | |
valid_query_texts = ( | |
maybe_cast_one_to_many_document(query_texts) | |
if query_texts is not None | |
else None | |
) | |
valid_query_images = ( | |
maybe_cast_one_to_many_image(query_images) | |
if query_images is not None | |
else None | |
) | |
valid_query_uris = ( | |
maybe_cast_one_to_many_uri(query_uris) if query_uris is not None else None | |
) | |
valid_include = validate_include(include, allow_distances=True) | |
valid_n_results = validate_n_results(n_results) | |
# If query_embeddings are not provided, we need to compute them from the inputs | |
if valid_query_embeddings is None: | |
if query_texts is not None: | |
valid_query_embeddings = self._embed(input=valid_query_texts) | |
elif query_images is not None: | |
valid_query_embeddings = self._embed(input=valid_query_images) | |
else: | |
if valid_query_uris is None: | |
raise ValueError( | |
"You must provide either query_embeddings, query_texts, query_images, or query_uris." | |
) | |
if self._data_loader is None: | |
raise ValueError( | |
"You must set a data loader on the collection if loading from URIs." | |
) | |
valid_query_embeddings = self._embed( | |
self._data_loader(valid_query_uris) | |
) | |
if "data" in include and "uris" not in include: | |
valid_include.append("uris") | |
query_results = self._client._query( | |
collection_id=self.id, | |
query_embeddings=valid_query_embeddings, | |
n_results=valid_n_results, | |
where=valid_where, | |
where_document=valid_where_document, | |
include=include, | |
) | |
if ( | |
"data" in include | |
and self._data_loader is not None | |
and query_results["uris"] is not None | |
): | |
query_results["data"] = [ | |
self._data_loader(uris) for uris in query_results["uris"] | |
] | |
# Remove URIs from the result if they weren't requested | |
if "uris" not in include: | |
query_results["uris"] = None | |
return query_results | |
def modify( | |
self, name: Optional[str] = None, metadata: Optional[CollectionMetadata] = None | |
) -> None: | |
"""Modify the collection name or metadata | |
Args: | |
name: The updated name for the collection. Optional. | |
metadata: The updated metadata for the collection. Optional. | |
Returns: | |
None | |
""" | |
if metadata is not None: | |
validate_metadata(metadata) | |
if "hnsw:space" in metadata: | |
raise ValueError( | |
"Changing the distance function of a collection once it is created is not supported currently.") | |
self._client._modify(id=self.id, new_name=name, new_metadata=metadata) | |
if name: | |
self.name = name | |
if metadata: | |
self.metadata = metadata | |
def update( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[np.ndarray], | |
] | |
] = None, | |
metadatas: Optional[OneOrMany[Metadata]] = None, | |
documents: Optional[OneOrMany[Document]] = None, | |
images: Optional[OneOrMany[Image]] = None, | |
uris: Optional[OneOrMany[URI]] = None, | |
) -> None: | |
"""Update the embeddings, metadatas or documents for provided ids. | |
Args: | |
ids: The ids of the embeddings to update | |
embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional. | |
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. | |
documents: The documents to associate with the embeddings. Optional. | |
images: The images to associate with the embeddings. Optional. | |
Returns: | |
None | |
""" | |
( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
) = self._validate_embedding_set( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
require_embeddings_or_data=False, | |
) | |
if embeddings is None: | |
if documents is not None: | |
embeddings = self._embed(input=documents) | |
elif images is not None: | |
embeddings = self._embed(input=images) | |
self._client._update(self.id, ids, embeddings, metadatas, documents, uris) | |
def upsert( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[np.ndarray], | |
] | |
] = None, | |
metadatas: Optional[OneOrMany[Metadata]] = None, | |
documents: Optional[OneOrMany[Document]] = None, | |
images: Optional[OneOrMany[Image]] = None, | |
uris: Optional[OneOrMany[URI]] = None, | |
) -> None: | |
"""Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist. | |
Args: | |
ids: The ids of the embeddings to update | |
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. | |
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. | |
documents: The documents to associate with the embeddings. Optional. | |
Returns: | |
None | |
""" | |
( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
) = self._validate_embedding_set( | |
ids, embeddings, metadatas, documents, images, uris | |
) | |
if embeddings is None: | |
if documents is not None: | |
embeddings = self._embed(input=documents) | |
else: | |
embeddings = self._embed(input=images) | |
self._client._upsert( | |
collection_id=self.id, | |
ids=ids, | |
embeddings=embeddings, | |
metadatas=metadatas, | |
documents=documents, | |
uris=uris, | |
) | |
def delete( | |
self, | |
ids: Optional[IDs] = None, | |
where: Optional[Where] = None, | |
where_document: Optional[WhereDocument] = None, | |
) -> None: | |
"""Delete the embeddings based on ids and/or a where filter | |
Args: | |
ids: The ids of the embeddings to delete | |
where: A Where type dict used to filter the delection by. E.g. `{"$and": ["color" : "red", "price": {"$gte": 4.20}]}`. Optional. | |
where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{$contains: {"text": "hello"}}`. Optional. | |
Returns: | |
None | |
Raises: | |
ValueError: If you don't provide either ids, where, or where_document | |
""" | |
ids = validate_ids(maybe_cast_one_to_many_ids(ids)) if ids else None | |
where = validate_where(where) if where else None | |
where_document = ( | |
validate_where_document(where_document) if where_document else None | |
) | |
self._client._delete(self.id, ids, where, where_document) | |
def _validate_embedding_set( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[np.ndarray], | |
] | |
], | |
metadatas: Optional[OneOrMany[Metadata]], | |
documents: Optional[OneOrMany[Document]], | |
images: Optional[OneOrMany[Image]] = None, | |
uris: Optional[OneOrMany[URI]] = None, | |
require_embeddings_or_data: bool = True, | |
) -> Tuple[ | |
IDs, | |
Optional[Embeddings], | |
Optional[Metadatas], | |
Optional[Documents], | |
Optional[Images], | |
Optional[URIs], | |
]: | |
valid_ids = validate_ids(maybe_cast_one_to_many_ids(ids)) | |
valid_embeddings = ( | |
validate_embeddings( | |
self._normalize_embeddings(maybe_cast_one_to_many_embedding(embeddings)) | |
) | |
if embeddings is not None | |
else None | |
) | |
valid_metadatas = ( | |
validate_metadatas(maybe_cast_one_to_many_metadata(metadatas)) | |
if metadatas is not None | |
else None | |
) | |
valid_documents = ( | |
maybe_cast_one_to_many_document(documents) | |
if documents is not None | |
else None | |
) | |
valid_images = ( | |
maybe_cast_one_to_many_image(images) if images is not None else None | |
) | |
valid_uris = maybe_cast_one_to_many_uri(uris) if uris is not None else None | |
# Check that one of embeddings or ducuments or images is provided | |
if require_embeddings_or_data: | |
if ( | |
valid_embeddings is None | |
and valid_documents is None | |
and valid_images is None | |
and valid_uris is None | |
): | |
raise ValueError( | |
"You must provide embeddings, documents, images, or uris." | |
) | |
# Only one of documents or images can be provided | |
if valid_documents is not None and valid_images is not None: | |
raise ValueError("You can only provide documents or images, not both.") | |
# Check that, if they're provided, the lengths of the arrays match the length of ids | |
if valid_embeddings is not None and len(valid_embeddings) != len(valid_ids): | |
raise ValueError( | |
f"Number of embeddings {len(valid_embeddings)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_metadatas is not None and len(valid_metadatas) != len(valid_ids): | |
raise ValueError( | |
f"Number of metadatas {len(valid_metadatas)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_documents is not None and len(valid_documents) != len(valid_ids): | |
raise ValueError( | |
f"Number of documents {len(valid_documents)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_images is not None and len(valid_images) != len(valid_ids): | |
raise ValueError( | |
f"Number of images {len(valid_images)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_uris is not None and len(valid_uris) != len(valid_ids): | |
raise ValueError( | |
f"Number of uris {len(valid_uris)} must match number of ids {len(valid_ids)}" | |
) | |
return ( | |
valid_ids, | |
valid_embeddings, | |
valid_metadatas, | |
valid_documents, | |
valid_images, | |
valid_uris, | |
) | |
def _normalize_embeddings( | |
embeddings: Union[ | |
OneOrMany[Embedding], | |
OneOrMany[np.ndarray], | |
] | |
) -> Embeddings: | |
if isinstance(embeddings, np.ndarray): | |
return embeddings.tolist() | |
return embeddings | |
def _embed(self, input: Any) -> Embeddings: | |
if self._embedding_function is None: | |
raise ValueError( | |
"You must provide an embedding function to compute embeddings." | |
"https://docs.trychroma.com/embeddings" | |
) | |
return self._embedding_function(input=input) | |