File size: 23,247 Bytes
287a0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
from typing import TYPE_CHECKING, Optional, Tuple, Any, Union

import numpy as np
from pydantic import BaseModel, PrivateAttr

from uuid import UUID
import chromadb.utils.embedding_functions as ef

from chromadb.api.types import (
    URI,
    CollectionMetadata,
    DataLoader,
    Embedding,
    Embeddings,
    Embeddable,
    Include,
    Loadable,
    Metadata,
    Metadatas,
    Document,
    Documents,
    Image,
    Images,
    URIs,
    Where,
    IDs,
    EmbeddingFunction,
    GetResult,
    QueryResult,
    ID,
    OneOrMany,
    WhereDocument,
    maybe_cast_one_to_many_ids,
    maybe_cast_one_to_many_embedding,
    maybe_cast_one_to_many_metadata,
    maybe_cast_one_to_many_document,
    maybe_cast_one_to_many_image,
    maybe_cast_one_to_many_uri,
    validate_ids,
    validate_include,
    validate_metadata,
    validate_metadatas,
    validate_where,
    validate_where_document,
    validate_n_results,
    validate_embeddings,
    validate_embedding_function,
)
import logging

logger = logging.getLogger(__name__)

if TYPE_CHECKING:
    from chromadb.api import ServerAPI


class Collection(BaseModel):
    name: str
    id: UUID
    metadata: Optional[CollectionMetadata] = None
    tenant: Optional[str] = None
    database: Optional[str] = None
    _client: "ServerAPI" = PrivateAttr()
    _embedding_function: Optional[EmbeddingFunction[Embeddable]] = PrivateAttr()
    _data_loader: Optional[DataLoader[Loadable]] = PrivateAttr()

    def __init__(
        self,
        client: "ServerAPI",
        name: str,
        id: UUID,
        embedding_function: Optional[
            EmbeddingFunction[Embeddable]
        ] = ef.DefaultEmbeddingFunction(),  # type: ignore
        data_loader: Optional[DataLoader[Loadable]] = None,
        tenant: Optional[str] = None,
        database: Optional[str] = None,
        metadata: Optional[CollectionMetadata] = None,
    ):
        super().__init__(
            name=name, metadata=metadata, id=id, tenant=tenant, database=database
        )
        self._client = client

        # Check to make sure the embedding function has the right signature, as defined by the EmbeddingFunction protocol
        if embedding_function is not None:
            validate_embedding_function(embedding_function)

        self._embedding_function = embedding_function
        self._data_loader = data_loader

    def __repr__(self) -> str:
        return f"Collection(name={self.name})"

    def count(self) -> int:
        """The total number of embeddings added to the database

        Returns:
            int: The total number of embeddings added to the database

        """
        return self._client._count(collection_id=self.id)

    def add(
        self,
        ids: OneOrMany[ID],
        embeddings: Optional[
            Union[
                OneOrMany[Embedding],
                OneOrMany[np.ndarray],
            ]
        ] = None,
        metadatas: Optional[OneOrMany[Metadata]] = None,
        documents: Optional[OneOrMany[Document]] = None,
        images: Optional[OneOrMany[Image]] = None,
        uris: Optional[OneOrMany[URI]] = None,
    ) -> None:
        """Add embeddings to the data store.
        Args:
            ids: The ids of the embeddings you wish to add
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
            uris: The uris of the images to associate with the embeddings. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either embeddings or documents
            ValueError: If the length of ids, embeddings, metadatas, or documents don't match
            ValueError: If you don't provide an embedding function and don't provide embeddings
            ValueError: If you provide both embeddings and documents
            ValueError: If you provide an id that already exists

        """

        (
            ids,
            embeddings,
            metadatas,
            documents,
            images,
            uris,
        ) = self._validate_embedding_set(
            ids, embeddings, metadatas, documents, images, uris
        )

        # We need to compute the embeddings if they're not provided
        if embeddings is None:
            # At this point, we know that one of documents or images are provided from the validation above
            if documents is not None:
                embeddings = self._embed(input=documents)
            elif images is not None:
                embeddings = self._embed(input=images)
            else:
                if uris is None:
                    raise ValueError(
                        "You must provide either embeddings, documents, images, or uris."
                    )
                if self._data_loader is None:
                    raise ValueError(
                        "You must set a data loader on the collection if loading from URIs."
                    )
                embeddings = self._embed(self._data_loader(uris))

        self._client._add(ids, self.id, embeddings, metadatas, documents, uris)

    def get(
        self,
        ids: Optional[OneOrMany[ID]] = None,
        where: Optional[Where] = None,
        limit: Optional[int] = None,
        offset: Optional[int] = None,
        where_document: Optional[WhereDocument] = None,
        include: Include = ["metadatas", "documents"],
    ) -> GetResult:
        """Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
        all embeddings up to limit starting at offset.

        Args:
            ids: The ids of the embeddings to get. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": ["color" : "red", "price": {"$gte": 4.20}]}`. Optional.
            limit: The number of documents to return. Optional.
            offset: The offset to start returning results from. Useful for paging results with limit. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.

        Returns:
            GetResult: A GetResult object containing the results.

        """

        valid_where = validate_where(where) if where else None
        valid_where_document = (
            validate_where_document(where_document) if where_document else None
        )
        valid_ids = validate_ids(maybe_cast_one_to_many_ids(ids)) if ids else None
        valid_include = validate_include(include, allow_distances=False)

        if "data" in include and self._data_loader is None:
            raise ValueError(
                "You must set a data loader on the collection if loading from URIs."
            )

        # We need to include uris in the result from the API to load datas
        if "data" in include and "uris" not in include:
            valid_include.append("uris")

        get_results = self._client._get(
            self.id,
            valid_ids,
            valid_where,
            None,
            limit,
            offset,
            where_document=valid_where_document,
            include=valid_include,
        )

        if (
            "data" in include
            and self._data_loader is not None
            and get_results["uris"] is not None
        ):
            get_results["data"] = self._data_loader(get_results["uris"])

        # Remove URIs from the result if they weren't requested
        if "uris" not in include:
            get_results["uris"] = None

        return get_results

    def peek(self, limit: int = 10) -> GetResult:
        """Get the first few results in the database up to limit

        Args:
            limit: The number of results to return.

        Returns:
            GetResult: A GetResult object containing the results.
        """
        return self._client._peek(self.id, limit)

    def query(
        self,
        query_embeddings: Optional[
            Union[
                OneOrMany[Embedding],
                OneOrMany[np.ndarray],
            ]
        ] = None,
        query_texts: Optional[OneOrMany[Document]] = None,
        query_images: Optional[OneOrMany[Image]] = None,
        query_uris: Optional[OneOrMany[URI]] = None,
        n_results: int = 10,
        where: Optional[Where] = None,
        where_document: Optional[WhereDocument] = None,
        include: Include = ["metadatas", "documents", "distances"],
    ) -> QueryResult:
        """Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.

        Args:
            query_embeddings: The embeddings to get the closes neighbors of. Optional.
            query_texts: The document texts to get the closes neighbors of. Optional.
            query_images: The images to get the closes neighbors of. Optional.
            n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": ["color" : "red", "price": {"$gte": 4.20}]}`. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.

        Returns:
            QueryResult: A QueryResult object containing the results.

        Raises:
            ValueError: If you don't provide either query_embeddings, query_texts, or query_images
            ValueError: If you provide both query_embeddings and query_texts
            ValueError: If you provide both query_embeddings and query_images
            ValueError: If you provide both query_texts and query_images

        """

        # Users must provide only one of query_embeddings, query_texts, query_images, or query_uris
        if not (
            (query_embeddings is not None)
            ^ (query_texts is not None)
            ^ (query_images is not None)
            ^ (query_uris is not None)
        ):
            raise ValueError(
                "You must provide one of query_embeddings, query_texts, query_images, or query_uris."
            )

        valid_where = validate_where(where) if where else {}
        valid_where_document = (
            validate_where_document(where_document) if where_document else {}
        )
        valid_query_embeddings = (
            validate_embeddings(
                self._normalize_embeddings(
                    maybe_cast_one_to_many_embedding(query_embeddings)
                )
            )
            if query_embeddings is not None
            else None
        )
        valid_query_texts = (
            maybe_cast_one_to_many_document(query_texts)
            if query_texts is not None
            else None
        )
        valid_query_images = (
            maybe_cast_one_to_many_image(query_images)
            if query_images is not None
            else None
        )
        valid_query_uris = (
            maybe_cast_one_to_many_uri(query_uris) if query_uris is not None else None
        )
        valid_include = validate_include(include, allow_distances=True)
        valid_n_results = validate_n_results(n_results)

        # If query_embeddings are not provided, we need to compute them from the inputs
        if valid_query_embeddings is None:
            if query_texts is not None:
                valid_query_embeddings = self._embed(input=valid_query_texts)
            elif query_images is not None:
                valid_query_embeddings = self._embed(input=valid_query_images)
            else:
                if valid_query_uris is None:
                    raise ValueError(
                        "You must provide either query_embeddings, query_texts, query_images, or query_uris."
                    )
                if self._data_loader is None:
                    raise ValueError(
                        "You must set a data loader on the collection if loading from URIs."
                    )
                valid_query_embeddings = self._embed(
                    self._data_loader(valid_query_uris)
                )

        if "data" in include and "uris" not in include:
            valid_include.append("uris")
        query_results = self._client._query(
            collection_id=self.id,
            query_embeddings=valid_query_embeddings,
            n_results=valid_n_results,
            where=valid_where,
            where_document=valid_where_document,
            include=include,
        )

        if (
            "data" in include
            and self._data_loader is not None
            and query_results["uris"] is not None
        ):
            query_results["data"] = [
                self._data_loader(uris) for uris in query_results["uris"]
            ]

        # Remove URIs from the result if they weren't requested
        if "uris" not in include:
            query_results["uris"] = None

        return query_results

    def modify(
        self, name: Optional[str] = None, metadata: Optional[CollectionMetadata] = None
    ) -> None:
        """Modify the collection name or metadata

        Args:
            name: The updated name for the collection. Optional.
            metadata: The updated metadata for the collection. Optional.

        Returns:
            None
        """
        if metadata is not None:
            validate_metadata(metadata)
            if "hnsw:space" in metadata:
                raise ValueError(
                    "Changing the distance function of a collection once it is created is not supported currently.")

        self._client._modify(id=self.id, new_name=name, new_metadata=metadata)
        if name:
            self.name = name
        if metadata:
            self.metadata = metadata

    def update(
        self,
        ids: OneOrMany[ID],
        embeddings: Optional[
            Union[
                OneOrMany[Embedding],
                OneOrMany[np.ndarray],
            ]
        ] = None,
        metadatas: Optional[OneOrMany[Metadata]] = None,
        documents: Optional[OneOrMany[Document]] = None,
        images: Optional[OneOrMany[Image]] = None,
        uris: Optional[OneOrMany[URI]] = None,
    ) -> None:
        """Update the embeddings, metadatas or documents for provided ids.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
        Returns:
            None
        """

        (
            ids,
            embeddings,
            metadatas,
            documents,
            images,
            uris,
        ) = self._validate_embedding_set(
            ids,
            embeddings,
            metadatas,
            documents,
            images,
            uris,
            require_embeddings_or_data=False,
        )

        if embeddings is None:
            if documents is not None:
                embeddings = self._embed(input=documents)
            elif images is not None:
                embeddings = self._embed(input=images)

        self._client._update(self.id, ids, embeddings, metadatas, documents, uris)

    def upsert(
        self,
        ids: OneOrMany[ID],
        embeddings: Optional[
            Union[
                OneOrMany[Embedding],
                OneOrMany[np.ndarray],
            ]
        ] = None,
        metadatas: Optional[OneOrMany[Metadata]] = None,
        documents: Optional[OneOrMany[Document]] = None,
        images: Optional[OneOrMany[Image]] = None,
        uris: Optional[OneOrMany[URI]] = None,
    ) -> None:
        """Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.

        Returns:
            None
        """

        (
            ids,
            embeddings,
            metadatas,
            documents,
            images,
            uris,
        ) = self._validate_embedding_set(
            ids, embeddings, metadatas, documents, images, uris
        )

        if embeddings is None:
            if documents is not None:
                embeddings = self._embed(input=documents)
            else:
                embeddings = self._embed(input=images)

        self._client._upsert(
            collection_id=self.id,
            ids=ids,
            embeddings=embeddings,
            metadatas=metadatas,
            documents=documents,
            uris=uris,
        )

    def delete(
        self,
        ids: Optional[IDs] = None,
        where: Optional[Where] = None,
        where_document: Optional[WhereDocument] = None,
    ) -> None:
        """Delete the embeddings based on ids and/or a where filter

        Args:
            ids: The ids of the embeddings to delete
            where: A Where type dict used to filter the delection by. E.g. `{"$and": ["color" : "red", "price": {"$gte": 4.20}]}`. Optional.
            where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{$contains: {"text": "hello"}}`. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either ids, where, or where_document
        """
        ids = validate_ids(maybe_cast_one_to_many_ids(ids)) if ids else None
        where = validate_where(where) if where else None
        where_document = (
            validate_where_document(where_document) if where_document else None
        )

        self._client._delete(self.id, ids, where, where_document)

    def _validate_embedding_set(
        self,
        ids: OneOrMany[ID],
        embeddings: Optional[
            Union[
                OneOrMany[Embedding],
                OneOrMany[np.ndarray],
            ]
        ],
        metadatas: Optional[OneOrMany[Metadata]],
        documents: Optional[OneOrMany[Document]],
        images: Optional[OneOrMany[Image]] = None,
        uris: Optional[OneOrMany[URI]] = None,
        require_embeddings_or_data: bool = True,
    ) -> Tuple[
        IDs,
        Optional[Embeddings],
        Optional[Metadatas],
        Optional[Documents],
        Optional[Images],
        Optional[URIs],
    ]:
        valid_ids = validate_ids(maybe_cast_one_to_many_ids(ids))
        valid_embeddings = (
            validate_embeddings(
                self._normalize_embeddings(maybe_cast_one_to_many_embedding(embeddings))
            )
            if embeddings is not None
            else None
        )
        valid_metadatas = (
            validate_metadatas(maybe_cast_one_to_many_metadata(metadatas))
            if metadatas is not None
            else None
        )
        valid_documents = (
            maybe_cast_one_to_many_document(documents)
            if documents is not None
            else None
        )
        valid_images = (
            maybe_cast_one_to_many_image(images) if images is not None else None
        )

        valid_uris = maybe_cast_one_to_many_uri(uris) if uris is not None else None

        # Check that one of embeddings or ducuments or images is provided
        if require_embeddings_or_data:
            if (
                valid_embeddings is None
                and valid_documents is None
                and valid_images is None
                and valid_uris is None
            ):
                raise ValueError(
                    "You must provide embeddings, documents, images, or uris."
                )

        # Only one of documents or images can be provided
        if valid_documents is not None and valid_images is not None:
            raise ValueError("You can only provide documents or images, not both.")

        # Check that, if they're provided, the lengths of the arrays match the length of ids
        if valid_embeddings is not None and len(valid_embeddings) != len(valid_ids):
            raise ValueError(
                f"Number of embeddings {len(valid_embeddings)} must match number of ids {len(valid_ids)}"
            )
        if valid_metadatas is not None and len(valid_metadatas) != len(valid_ids):
            raise ValueError(
                f"Number of metadatas {len(valid_metadatas)} must match number of ids {len(valid_ids)}"
            )
        if valid_documents is not None and len(valid_documents) != len(valid_ids):
            raise ValueError(
                f"Number of documents {len(valid_documents)} must match number of ids {len(valid_ids)}"
            )
        if valid_images is not None and len(valid_images) != len(valid_ids):
            raise ValueError(
                f"Number of images {len(valid_images)} must match number of ids {len(valid_ids)}"
            )
        if valid_uris is not None and len(valid_uris) != len(valid_ids):
            raise ValueError(
                f"Number of uris {len(valid_uris)} must match number of ids {len(valid_ids)}"
            )

        return (
            valid_ids,
            valid_embeddings,
            valid_metadatas,
            valid_documents,
            valid_images,
            valid_uris,
        )

    @staticmethod
    def _normalize_embeddings(
        embeddings: Union[
            OneOrMany[Embedding],
            OneOrMany[np.ndarray],
        ]
    ) -> Embeddings:
        if isinstance(embeddings, np.ndarray):
            return embeddings.tolist()
        return embeddings

    def _embed(self, input: Any) -> Embeddings:
        if self._embedding_function is None:
            raise ValueError(
                "You must provide an embedding function to compute embeddings."
                "https://docs.trychroma.com/embeddings"
            )
        return self._embedding_function(input=input)