File size: 15,674 Bytes
c8d3120
 
e7dca95
 
c8d3120
 
 
 
f9436ab
bb54a91
c8d3120
9d65492
c8d3120
 
9d65492
 
 
 
 
e59c0f4
9d65492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7dca95
 
 
 
 
 
 
 
 
 
9d65492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59c0f4
 
b53ef32
 
 
e59c0f4
 
b53ef32
 
 
 
 
 
e59c0f4
 
b53ef32
 
 
21f32e0
e59c0f4
21f32e0
e59c0f4
 
 
9d65492
 
 
 
 
 
 
 
 
 
 
 
923e115
44a2fdc
 
 
 
b2b61a4
44a2fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b61a4
 
 
 
 
44a2fdc
 
 
b2b61a4
44a2fdc
 
b2b61a4
 
44a2fdc
 
 
 
b2b61a4
 
67b038e
dd95b9e
 
bff04be
67b038e
44a2fdc
67b038e
 
44a2fdc
67b038e
44a2fdc
 
 
 
b2b61a4
44a2fdc
 
 
 
 
 
21f32e0
44a2fdc
 
 
b2b61a4
 
44a2fdc
4f918b0
44a2fdc
 
 
 
 
 
e7dca95
 
 
 
 
 
 
cb23120
 
 
b2b61a4
44a2fdc
 
 
 
 
 
 
 
 
b2b61a4
b241369
cb23120
b241369
cb23120
 
 
 
 
fabd7ec
cb23120
fabd7ec
cb23120
 
be22283
44a2fdc
 
e7dca95
c1f1fb3
b366d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a8632
b366d00
44a2fdc
 
b2b61a4
f9436ab
 
554ffe9
f9436ab
 
 
b2b61a4
 
 
 
f9436ab
b2b61a4
 
 
c1f1fb3
f9436ab
b2b61a4
 
b366d00
b2b61a4
44a2fdc
e7dca95
c1f1fb3
4f918b0
b366d00
4f918b0
b366d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f918b0
 
 
 
b366d00
99a8632
4f918b0
44a2fdc
 
e7dca95
 
554ffe9
e7dca95
 
 
 
 
 
 
bb54a91
9d65492
44a2fdc
9d65492
 
 
8a69875
9d65492
b2b61a4
f0f8674
9d65492
 
 
 
f6702aa
cb23120
 
 
 
 
dd95b9e
cb23120
 
 
 
 
 
 
 
 
 
 
 
 
e7dca95
 
 
4225f65
9d65492
 
 
 
 
 
75da36d
e7dca95
8a69875
9d65492
 
 
75da36d
554ffe9
 
 
 
 
 
 
e7dca95
 
 
 
 
9d65492
 
 
554ffe9
 
9d65492
b2b61a4
9d65492
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import streamlit as st
import os
from langchain.memory import ConversationBufferMemory
import uuid
from dotenv import load_dotenv
import time
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA, LLMChain
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Set page configuration with wide layout
st.set_page_config(
    page_title="Dr. Radha: The Agro-Homeopath",
    page_icon="🌿",
    layout="wide"
)

# Enhanced CSS styling
st.markdown("""
    <style>
    /* Main container styling */
    .stApp {
        background-color: #1B4D3E;
    }
    
    /* Chat message styling */
    .stChatMessage {
        background-color: rgba(255, 255, 255, 0.1);
        border-radius: 15px;
        padding: 15px;
        margin: 10px 0;
        border: 1px solid rgba(255, 255, 255, 0.2);
    }
    
    /* Input field styling */
    .stChatInput {
        border-radius: 20px !important;
        border: 2px solid rgba(255, 255, 255, 0.2) !important;
        background-color: rgba(255, 255, 255, 0.05) !important;
    }
    
    /* Style all text elements in white */
    .stMarkdown, .stText, .stTitle, .stHeader, .stSubheader, 
    .stTextInput label, .stSelectbox label, .st-emotion-cache-10trblm,
    .st-emotion-cache-1a7jz76, .st-emotion-cache-1629p8f,
    [data-testid="stTitle"], [data-testid="stSubheader"] {
        color: white !important;
    }
    
    /* Additional specific selectors for title and subheader */
    h1, h2, h3 {
        color: white !important;
    }
    
    /* Button styling */
    .stButton > button {
        background-color: #FFD700 !important;
        color: #1B4D3E !important;
        font-weight: bold;
        border-radius: 25px;
        padding: 10px 25px;
        border: none;
        transition: all 0.3s ease;
    }
    
    .stButton > button:hover {
        transform: scale(1.05);
        box-shadow: 0 5px 15px rgba(0,0,0,0.2);
    }
    
    /* Center alignment */
    .css-10trblm, .css-1a7jz76 {
        text-align: center !important;
    }
    </style>
""", unsafe_allow_html=True)

st.markdown("""
<style>
/* Sidebar styling */
[data-testid="stSidebar"] {
    background-color: #2fab1a !important;
}

/* Sidebar content styling */
[data-testid="stSidebar"] .stMarkdown, 
[data-testid="stSidebar"] .stText, 
[data-testid="stSidebar"] .stTitle,
[data-testid="stSidebar"] label {
    color: white !important;
}

/* Ensure text areas in sidebar maintain styling */
[data-testid="stSidebar"] .stTextArea textarea {
    background-color: #2fab1a !important;
    color: black !important;
}

</style>
""", unsafe_allow_html=True)

# Initialize session state for chat history
if "messages" not in st.session_state:
    st.session_state.messages = []
    st.session_state.messages.append({
        "role": "assistant",
        "content": "👋 Hello! I'm Dr. Radha, your AI-powered Organic Farming Consultant. How can I assist you today?"
    })

# Your existing initialization code here
PERSISTENT_DIR = "vector_db"
# [Keep all your existing functions and variable definitions]


# Set persistent storage path
PERSISTENT_DIR = "vector_db"

def initialize_vector_db():
    # Check if vector database already exists in persistent storage
    if os.path.exists(PERSISTENT_DIR) and os.listdir(PERSISTENT_DIR):
        embeddings = HuggingFaceEmbeddings()
        vector_db = Chroma(persist_directory=PERSISTENT_DIR, embedding_function=embeddings)
        return None, vector_db
    
    base_dir = os.path.dirname(os.path.abspath(__file__))
    pdf_files = [f for f in os.listdir(base_dir) if f.endswith('.pdf')]
    loaders = [PyPDFLoader(os.path.join(base_dir, fn)) for fn in pdf_files]
    
    documents = []
    for loader in loaders:
        documents.extend(loader.load())
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len,
        separators=["\n\n", "\n", " ", ""]
    )
    texts = text_splitter.split_documents(documents)
    
    embeddings = HuggingFaceEmbeddings()
    vector_db = Chroma.from_documents(
        texts, 
        embeddings, 
        persist_directory=PERSISTENT_DIR
    )
    vector_db.persist()
    return documents, vector_db

# System instructions for the LLM
system_prompt = """You are an expert organic farming consultant with specialization in Agro-Homeopathy. When providing suggestions and remedies:
1. Always specify medicine potency as 6c unless the uploaded text mentions some other value explicitly
3. Provide comprehensive diagnosis and treatment advice along with organic farming best practices applicable in the given context
4. Base recommendations on homeopathic and organic farming principles
"""

api_key1 = os.getenv("api_key")

start_time = time.time()

# Title and subheader
st.title("🌿 Dr. Radha: AI-Powered Organic Farming Consultant")
st.subheader("Specializing in Agro-Homeopathy | Free Consultation")

# Information message with centered alignment
st.markdown("""
Please provide complete details about the issue, including:<br>
- Detailed description of plant problem<br>
- Current location, temperature & weather conditions
""", unsafe_allow_html=True)

human_image = "human.png"
robot_image = "bot.jpg"

# Set up Groq API with temperature 0.7
llm = ChatGroq(
    api_key=api_key1, 
    max_tokens=None, 
    timeout=None, 
    max_retries=2, 
    temperature=0.7,
    model="llama-3.3-70b-versatile"
)

embeddings = HuggingFaceEmbeddings()
end_time = time.time()
print(f"Setting up Groq LLM & Embeddings took {end_time - start_time:.4f} seconds")

# Initialize session state
if "documents" not in st.session_state:
    st.session_state["documents"] = None
if "vector_db" not in st.session_state:  
    st.session_state["vector_db"] = None
if "query" not in st.session_state:
    st.session_state["query"] = ""
if "session_id" not in st.session_state:
    st.session_state.session_id = str(uuid.uuid4())
if "conversation_memory" not in st.session_state:
    st.session_state.conversation_memory = ConversationBufferMemory(
        memory_key="chat_history",
        return_messages=True
    )
if "saved_conversations" not in st.session_state:
    st.session_state.saved_conversations = []
    
start_time = time.time()
if st.session_state["documents"] is None or st.session_state["vector_db"] is None:
    with st.spinner("Loading data..."):
        documents, vector_db = initialize_vector_db()
        st.session_state["documents"] = documents  
        st.session_state["vector_db"] = vector_db
else:
    documents = st.session_state["documents"]
    vector_db = st.session_state["vector_db"]

retriever = vector_db.as_retriever()
with st.sidebar:
    st.title("Past Conversations")
    
    # Display saved conversations
    for idx, conv in enumerate(st.session_state.saved_conversations):
        # Get the first message from user in the conversation
        first_user_msg = next((msg["content"] for msg in conv if msg["role"] == "user"), "")
        # Take first 30 characters of the message
        preview = first_user_msg[:50] + "..." if len(first_user_msg) > 50 else first_user_msg
        
        if st.button(f"Query {idx + 1}: {preview}", key=f"conv_{idx}"):
            st.session_state.messages = conv.copy()
            st.rerun()

prompt_template = """As an expert organic farming consultant with specialization in Agro-Homeopathy, analyze the following context and question to provide a clear, structured response.
Context: {context}
Previous conversation:{chat_history}
Question: {query}
Provide your response in the following format:
Analysis: Analyze the described plant condition
Treatment: Recommend relevant organic farming principles and specific homeopathic medicine(s) with exact potency and repetition frequency. Suggest a maximum of 4 medicines in the order of relevance for any single problem. 
Instructions for Use:
Small Plots or Gardens: Make sure your dispensing equipment is not contaminated with
other chemicals or fertilisers as these may antidote the energetic effects of the treatment—
rinse well with hot water before use if necessary. Add one pill to each 200 ml of water, shake
vigorously, and then spray or water your plants. Avoid using other chemicals or fertilisers for
10 days following treatment so that the energetic effects of the treatment are not antidoted.
(One vial of 100 pills makes 20 litres. Plants remain insect or disease free for up to 3 months
following one treatment.)
Large Plots or Farms: Add the remedy to water and apply with the dispensing device of
your choice: watering can, backpack sprayer, boomspray, reticulation systems (add to tanks
or pumps). Make sure your dispensing equipment is not contaminated with other chemicals
or fertilisers as these may antidote the energetic effects of the treatment—rinse with hot
water or steam clean before use if necessary. Avoid using other chemicals or fertilisers for
10 days following treatment.
Dosage rates are approximate and may vary according to different circumstances and
experiences. Suggested doses are:
10 pills or 10ml/10 litre on small areas,
500 pills or 125ml/500l per hectare,
1000 pills or 250ml/500l per hectare,
2500 pills or 500ml/500l per hectare,
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
Recommendations: Provide three key pertinent recommendations based on the query
Remember to maintain a professional, clear tone and ensure all medicine recommendations include specific potency.
Answer:"""

# Create the QA chain with correct variables
memory = ConversationBufferMemory(
    memory_key="chat_history",
    input_key="query",
    output_key="answer"
)

qa = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=retriever,
    memory=memory,
    chain_type_kwargs={
        "prompt": PromptTemplate(
            template=prompt_template,
            input_variables=["context", "query"]
        )
    }
)

# Create a separate LLMChain for fallback
fallback_template = """As an expert organic farming consultant with specialization in Agro-Homeopathy, analyze the following context and question to provide a clear, structured response.
Previous conversation:{chat_history}
Question: {query}
Format your response as follows:
Analysis: Analyze the described plant condition
Treatment: Recommend relevant organic farming principles and specific homeopathic medicine(s) with exact potency and repetition frequency. Suggest a maximum of 4 medicines in the order of relevance for any single problem.
Instructions for Use:
Small Plots or Gardens: Make sure your dispensing equipment is not contaminated with
other chemicals or fertilisers as these may antidote the energetic effects of the treatment—
rinse well with hot water before use if necessary. Add one pill to each 200 ml of water, shake
vigorously, and then spray or water your plants. Avoid using other chemicals or fertilisers for
10 days following treatment so that the energetic effects of the treatment are not antidoted.
(One vial of 100 pills makes 20 litres. Plants remain insect or disease free for up to 3 months
following one treatment.)
Large Plots or Farms: Add the remedy to water and apply with the dispensing device of
your choice: watering can, backpack sprayer, boomspray, reticulation systems (add to tanks
or pumps). Make sure your dispensing equipment is not contaminated with other chemicals
or fertilisers as these may antidote the energetic effects of the treatment—rinse with hot
water or steam clean before use if necessary. Avoid using other chemicals or fertilisers for
10 days following treatment.
Dosage rates are approximate and may vary according to different circumstances and
experiences. Suggested doses are:
10 pills or 10ml/10 litre on small areas
500 pills or 125ml/500l per hectare
1000 pills or 250ml/500l per hectare
2500 pills or 500ml/500l per hectare
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
Recommendations: Provide three key pertinent recommendations based on the query
Maintain a professional tone and ensure all medicine recommendations include specific potency.
Answer:"""

fallback_prompt = PromptTemplate(
    template=fallback_template,
    input_variables=["query", "chat_history"]
)
fallback_chain = LLMChain(
    llm=llm,
    prompt=fallback_prompt,
    memory=st.session_state.conversation_memory
)


# Replace your existing chat container and form section with this:
chat_container = st.container()
with chat_container:
    # Display chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar="👤" if message["role"] == "user" else "👩‍⚕️"):
            st.markdown(message["content"])

with st.form(key='query_form', clear_on_submit=True):
    query = st.text_input(
        "Ask your question:",
        placeholder="Describe your plant issue here...",
        label_visibility="collapsed"
    )
    col1, col2 = st.columns([1, 1])
    with col1:
        submit_button = st.form_submit_button(label='Submit 📤')
    with col2:
        new_conv_button = st.form_submit_button(label='New Conversation 🔄')

if new_conv_button and len(st.session_state.messages) > 1:
    # Save current conversation
    st.session_state.saved_conversations.append(st.session_state.messages.copy())
    
    # Clear current conversation
    st.session_state.messages = []
    st.session_state.messages.append({
        "role": "assistant",
        "content": "👋 Hello! I'm Dr. Radha, your AI-powered Organic Farming Consultant. How can I assist you today?"
    })
    st.session_state.conversation_memory.clear()
    st.rerun()
    
human_image = "human.png"
robot_image = "bot.jpg"

if submit_button and query:
    # Add user message to history
    st.session_state.messages.append({"role": "user", "content": query})
    
    # Show user message
    with st.chat_message("user", avatar="👤"):
        st.markdown(query)
        
    # Show typing indicator while generating response "🌿"
    with st.chat_message("assistant", avatar="👩‍⚕️"):  
        with st.status("Analyzing your query...", expanded=True):
            st.write("🔍 Retrieving relevant information...")
            st.write("📝 Generating personalized response...")
            chat_history = st.session_state.conversation_memory.load_memory_variables({}).get("chat_history", "")
            try:
                result = qa({
                    "query": query  # Changed from "query" to "question"
                })
                response = result['result'] if result['result'].strip() != "" else fallback_chain.run(query=query, chat_history=st.session_state.conversation_memory.load_memory_variables({})["chat_history"])
            except Exception as e:
                response = fallback_chain.run(query=query, chat_history=st.session_state.conversation_memory.load_memory_variables({})["chat_history"])

            st.session_state.conversation_memory.save_context(
                {"input": query},
                {"output": response}
            )
            
            # Display final response
            st.markdown(response)
            st.session_state.messages.append({"role": "assistant", "content": response})

    # Clear the form
    st.session_state["query"] = ""
    
    # Rerun to update chat history
    st.rerun()