Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
-
import base64
|
2 |
-
from itertools import cycle
|
3 |
-
import time
|
4 |
import streamlit as st
|
5 |
-
from streamlit_carousel import carousel
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
import time
|
@@ -15,124 +11,11 @@ from langchain.document_loaders import PyPDFLoader
|
|
15 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
from langchain.chains import LLMChain
|
17 |
|
18 |
-
st.set_page_config(page_title="Dr. Radha: The Agro-Homeopath", page_icon="🌿")
|
19 |
-
|
20 |
# Set persistent storage path
|
21 |
PERSISTENT_DIR = "vector_db"
|
22 |
|
23 |
-
|
24 |
-
# Add custom CSS to maintain consistent image height
|
25 |
-
st.markdown("""
|
26 |
-
<style>
|
27 |
-
.stApp {
|
28 |
-
background-color: #1B4D3E !important;
|
29 |
-
color: white !important;
|
30 |
-
max-width: 100%;
|
31 |
-
padding: 1rem;
|
32 |
-
}
|
33 |
-
|
34 |
-
/* Make carousel images equal size */
|
35 |
-
.carousel {
|
36 |
-
width: 100%;
|
37 |
-
height: 400px;
|
38 |
-
}
|
39 |
-
|
40 |
-
.carousel img {
|
41 |
-
width: 100%;
|
42 |
-
height: 400px;
|
43 |
-
object-fit: cover;
|
44 |
-
object-position: center;
|
45 |
-
}
|
46 |
-
|
47 |
-
/* Style the form and button */
|
48 |
-
.stButton > button {
|
49 |
-
color: black !important;
|
50 |
-
background-color: yellow !important;
|
51 |
-
width: 100%;
|
52 |
-
padding: 0.5rem;
|
53 |
-
}
|
54 |
-
|
55 |
-
/* Make text input and output full width */
|
56 |
-
.stTextInput > div > div > input {
|
57 |
-
color: black !important;
|
58 |
-
background-color: rgba(255,255,255,0.1) !important;
|
59 |
-
width: 100%;
|
60 |
-
}
|
61 |
-
|
62 |
-
/* Style the chat container */
|
63 |
-
.chat-container {
|
64 |
-
width: 100%;
|
65 |
-
max-width: 1200px;
|
66 |
-
margin: 0 auto;
|
67 |
-
padding: 1rem;
|
68 |
-
}
|
69 |
-
|
70 |
-
/* Make title and headers full width */
|
71 |
-
.stTitle, .stHeader {
|
72 |
-
width: 100%;
|
73 |
-
text-align: center;
|
74 |
-
margin: 1rem 0;
|
75 |
-
}
|
76 |
-
</style>
|
77 |
-
""", unsafe_allow_html=True)
|
78 |
-
|
79 |
-
# Define image paths
|
80 |
-
HEADER_IMAGE = "i1.jpg" # Organic farming landscape
|
81 |
-
SIDE_IMAGE = "i2.JPG" # Medicinal plants/herbs
|
82 |
-
FOOTER_IMAGE = "i3.JPG" # Sustainable farming practices
|
83 |
-
|
84 |
-
# Define the images list before using the carousel
|
85 |
-
images = [
|
86 |
-
dict(
|
87 |
-
title="",
|
88 |
-
text="",
|
89 |
-
img="i1.jpg",
|
90 |
-
imgStyle={
|
91 |
-
"width": "100%",
|
92 |
-
"height": "400px",
|
93 |
-
"objectFit": "cover",
|
94 |
-
"objectPosition": "center"
|
95 |
-
}
|
96 |
-
),
|
97 |
-
dict(
|
98 |
-
title="",
|
99 |
-
text="",
|
100 |
-
img="i2.JPG",
|
101 |
-
imgStyle={
|
102 |
-
"width": "100%",
|
103 |
-
"height": "400px",
|
104 |
-
"objectFit": "cover",
|
105 |
-
"objectPosition": "center"
|
106 |
-
}
|
107 |
-
),dict(
|
108 |
-
title="",
|
109 |
-
text="",
|
110 |
-
img="i3.JPG",
|
111 |
-
imgStyle={
|
112 |
-
"width": "100%",
|
113 |
-
"height": "400px",
|
114 |
-
"objectFit": "cover",
|
115 |
-
"objectPosition": "center"
|
116 |
-
}
|
117 |
-
),
|
118 |
-
dict(
|
119 |
-
title="",
|
120 |
-
text="",
|
121 |
-
img="i5.JPG",
|
122 |
-
imgStyle={
|
123 |
-
"width": "100%",
|
124 |
-
"height": "400px",
|
125 |
-
"objectFit": "cover",
|
126 |
-
"objectPosition": "center"
|
127 |
-
}
|
128 |
-
)
|
129 |
-
]
|
130 |
-
|
131 |
-
carousel_container = st.container()
|
132 |
-
with carousel_container:
|
133 |
-
carousel(items=images)
|
134 |
-
|
135 |
def initialize_vector_db():
|
|
|
136 |
if os.path.exists(PERSISTENT_DIR) and os.listdir(PERSISTENT_DIR):
|
137 |
embeddings = HuggingFaceEmbeddings()
|
138 |
vector_db = Chroma(persist_directory=PERSISTENT_DIR, embedding_function=embeddings)
|
@@ -155,21 +38,65 @@ def initialize_vector_db():
|
|
155 |
texts = text_splitter.split_documents(documents)
|
156 |
|
157 |
embeddings = HuggingFaceEmbeddings()
|
158 |
-
vector_db = Chroma.from_documents(
|
|
|
|
|
|
|
|
|
159 |
vector_db.persist()
|
160 |
return documents, vector_db
|
161 |
|
|
|
162 |
system_prompt = """You are an expert organic farming consultant with specialization in Agro-Homeopathy. When providing suggestions and remedies:
|
163 |
1. Always specify medicine potency as 6c unless the uploaded text mentions some other value explicitly
|
164 |
-
|
165 |
-
|
166 |
"""
|
167 |
|
168 |
api_key1 = os.getenv("api_key")
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
st.title("🌿 Dr. Radha: AI-Powered Organic Farming Consultant")
|
171 |
st.subheader("Specializing in Agro-Homeopathy | Free Consultation")
|
172 |
|
|
|
173 |
st.markdown("""
|
174 |
Please provide complete details about the issue, including:
|
175 |
- Detailed description of plant problem
|
@@ -179,6 +106,7 @@ Please provide complete details about the issue, including:
|
|
179 |
human_image = "human.png"
|
180 |
robot_image = "bot.jpg"
|
181 |
|
|
|
182 |
llm = ChatGroq(
|
183 |
api_key=api_key1,
|
184 |
max_tokens=None,
|
@@ -189,6 +117,8 @@ llm = ChatGroq(
|
|
189 |
)
|
190 |
|
191 |
embeddings = HuggingFaceEmbeddings()
|
|
|
|
|
192 |
|
193 |
# Initialize session state
|
194 |
if "documents" not in st.session_state:
|
@@ -197,7 +127,8 @@ if "vector_db" not in st.session_state:
|
|
197 |
st.session_state["vector_db"] = None
|
198 |
if "query" not in st.session_state:
|
199 |
st.session_state["query"] = ""
|
200 |
-
|
|
|
201 |
if st.session_state["documents"] is None or st.session_state["vector_db"] is None:
|
202 |
with st.spinner("Loading data..."):
|
203 |
documents, vector_db = initialize_vector_db()
|
@@ -207,18 +138,15 @@ else:
|
|
207 |
documents = st.session_state["documents"]
|
208 |
vector_db = st.session_state["vector_db"]
|
209 |
|
210 |
-
|
|
|
211 |
|
212 |
-
|
213 |
-
|
214 |
|
215 |
-
# Rest of your prompt templates and chain setup remains the same
|
216 |
prompt_template = """As an expert organic farming consultant with specialization in Agro-Homeopathy, analyze the following context and question to provide a clear, structured response.
|
217 |
-
|
218 |
Context: {context}
|
219 |
-
|
220 |
Question: {question}
|
221 |
-
|
222 |
Provide your response in the following format:
|
223 |
Analysis: Analyze the described plant condition
|
224 |
Treatment: Recommend relevant organic farming principles and specific homeopathic medicine(s) with exact potency and repetition frequency. Suggest a maximum of 4 medicines in the order of relevance for any single problem.
|
@@ -243,18 +171,26 @@ experiences. Suggested doses are:
|
|
243 |
1000 pills or 250ml/500l per hectare,
|
244 |
2500 pills or 500ml/500l per hectare,
|
245 |
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
|
246 |
-
|
247 |
Recommendations: Provide couple of key pertinent recommendations based on the query
|
248 |
-
|
249 |
Remember to maintain a professional, clear tone and ensure all medicine recommendations include specific potency.
|
250 |
-
|
251 |
Answer:"""
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
|
|
254 |
fallback_template = """As an expert organic farming consultant with specialization in Agro-Homeopathy, analyze the following context and question to provide a clear, structured response.
|
255 |
-
|
256 |
Question: {question}
|
257 |
-
|
258 |
Format your response as follows:
|
259 |
Analysis: Analyze the described plant condition
|
260 |
Treatment: Recommend relevant organic farming principles and specific homeopathic medicine(s) with exact potency and repetition frequency. Suggest a maximum of 4 medicines in the order of relevance for any single problem.
|
@@ -279,80 +215,55 @@ experiences. Suggested doses are:
|
|
279 |
1000 pills or 250ml/500l per hectare
|
280 |
2500 pills or 500ml/500l per hectare
|
281 |
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
|
282 |
-
|
283 |
Recommendations: Provide couple of key pertinent recommendations based on the query
|
284 |
-
|
285 |
Maintain a professional tone and ensure all medicine recommendations include specific potency.
|
286 |
-
|
287 |
Answer:"""
|
288 |
|
289 |
-
qa = RetrievalQA.from_chain_type(
|
290 |
-
llm=llm,
|
291 |
-
chain_type="stuff",
|
292 |
-
retriever=retriever,
|
293 |
-
chain_type_kwargs={
|
294 |
-
"prompt": PromptTemplate(
|
295 |
-
template=prompt_template,
|
296 |
-
input_variables=["context", "question"]
|
297 |
-
)
|
298 |
-
}
|
299 |
-
)
|
300 |
-
|
301 |
fallback_prompt = PromptTemplate(template=fallback_template, input_variables=["question"])
|
302 |
fallback_chain = LLMChain(llm=llm, prompt=fallback_prompt)
|
303 |
|
304 |
-
st.markdown("""
|
305 |
-
<style>
|
306 |
-
.stTextArea label {
|
307 |
-
color: white !important;
|
308 |
-
font-size: 1rem !important;
|
309 |
-
}
|
310 |
-
.stButton button {
|
311 |
-
color: black !important;
|
312 |
-
}
|
313 |
-
</style>
|
314 |
-
""", unsafe_allow_html=True)
|
315 |
-
|
316 |
chat_container = st.container()
|
|
|
317 |
st.markdown("""
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
.stButton button:hover {
|
325 |
-
color: red !important;
|
326 |
-
border-color: red;
|
327 |
-
}
|
328 |
-
</style>
|
329 |
""", unsafe_allow_html=True)
|
330 |
-
with st.form(key='query_form', clear_on_submit=True):
|
331 |
-
query = st.text_area("Ask your question:", height=100)
|
332 |
-
col1, col2, col3 = st.columns([1,6,1])
|
333 |
-
with col2:
|
334 |
-
submit_button = st.form_submit_button(label='Submit')
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
if submit_button and query:
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
result
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
4 |
import time
|
|
|
11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
from langchain.chains import LLMChain
|
13 |
|
|
|
|
|
14 |
# Set persistent storage path
|
15 |
PERSISTENT_DIR = "vector_db"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def initialize_vector_db():
|
18 |
+
# Check if vector database already exists in persistent storage
|
19 |
if os.path.exists(PERSISTENT_DIR) and os.listdir(PERSISTENT_DIR):
|
20 |
embeddings = HuggingFaceEmbeddings()
|
21 |
vector_db = Chroma(persist_directory=PERSISTENT_DIR, embedding_function=embeddings)
|
|
|
38 |
texts = text_splitter.split_documents(documents)
|
39 |
|
40 |
embeddings = HuggingFaceEmbeddings()
|
41 |
+
vector_db = Chroma.from_documents(
|
42 |
+
texts,
|
43 |
+
embeddings,
|
44 |
+
persist_directory=PERSISTENT_DIR
|
45 |
+
)
|
46 |
vector_db.persist()
|
47 |
return documents, vector_db
|
48 |
|
49 |
+
# System instructions for the LLM
|
50 |
system_prompt = """You are an expert organic farming consultant with specialization in Agro-Homeopathy. When providing suggestions and remedies:
|
51 |
1. Always specify medicine potency as 6c unless the uploaded text mentions some other value explicitly
|
52 |
+
3. Provide comprehensive diagnosis and treatment advice along with organic farming best practices applicable in the given context
|
53 |
+
4. Base recommendations on homeopathic and organic farming principles
|
54 |
"""
|
55 |
|
56 |
api_key1 = os.getenv("api_key")
|
57 |
|
58 |
+
start_time = time.time()
|
59 |
+
st.set_page_config(page_title="Dr. Radha: The Agro-Homeopath", page_icon="🚀", layout="wide")
|
60 |
+
|
61 |
+
# CSS for dark green background and white text
|
62 |
+
st.markdown("""
|
63 |
+
<style>
|
64 |
+
/* Set background color for entire app */
|
65 |
+
.stApp {
|
66 |
+
background-color: #1B4D3E !important;
|
67 |
+
color: white !important;
|
68 |
+
}
|
69 |
+
|
70 |
+
/* Style input fields */
|
71 |
+
.stTextInput>div>div>input {
|
72 |
+
color: black !important;
|
73 |
+
background-color: rgba(255,255,255,0.1) !important;
|
74 |
+
}
|
75 |
+
|
76 |
+
/* Style buttons */
|
77 |
+
.stButton>button {
|
78 |
+
color: black !important;
|
79 |
+
background-color: yellow !important;
|
80 |
+
}
|
81 |
+
|
82 |
+
}
|
83 |
+
</style>
|
84 |
+
""", unsafe_allow_html=True)
|
85 |
+
|
86 |
+
st.markdown("""
|
87 |
+
<style>
|
88 |
+
#the-title {
|
89 |
+
text-align: center;
|
90 |
+
font-size: 24px;
|
91 |
+
color: white;
|
92 |
+
}
|
93 |
+
</style>
|
94 |
+
""", unsafe_allow_html=True)
|
95 |
+
|
96 |
st.title("🌿 Dr. Radha: AI-Powered Organic Farming Consultant")
|
97 |
st.subheader("Specializing in Agro-Homeopathy | Free Consultation")
|
98 |
|
99 |
+
# Add information request message
|
100 |
st.markdown("""
|
101 |
Please provide complete details about the issue, including:
|
102 |
- Detailed description of plant problem
|
|
|
106 |
human_image = "human.png"
|
107 |
robot_image = "bot.jpg"
|
108 |
|
109 |
+
# Set up Groq API with temperature 0.7
|
110 |
llm = ChatGroq(
|
111 |
api_key=api_key1,
|
112 |
max_tokens=None,
|
|
|
117 |
)
|
118 |
|
119 |
embeddings = HuggingFaceEmbeddings()
|
120 |
+
end_time = time.time()
|
121 |
+
print(f"Setting up Groq LLM & Embeddings took {end_time - start_time:.4f} seconds")
|
122 |
|
123 |
# Initialize session state
|
124 |
if "documents" not in st.session_state:
|
|
|
127 |
st.session_state["vector_db"] = None
|
128 |
if "query" not in st.session_state:
|
129 |
st.session_state["query"] = ""
|
130 |
+
|
131 |
+
start_time = time.time()
|
132 |
if st.session_state["documents"] is None or st.session_state["vector_db"] is None:
|
133 |
with st.spinner("Loading data..."):
|
134 |
documents, vector_db = initialize_vector_db()
|
|
|
138 |
documents = st.session_state["documents"]
|
139 |
vector_db = st.session_state["vector_db"]
|
140 |
|
141 |
+
end_time = time.time()
|
142 |
+
print(f"Loading and processing PDFs & vector database took {end_time - start_time:.4f} seconds")
|
143 |
|
144 |
+
start_time = time.time()
|
145 |
+
retriever = vector_db.as_retriever()
|
146 |
|
|
|
147 |
prompt_template = """As an expert organic farming consultant with specialization in Agro-Homeopathy, analyze the following context and question to provide a clear, structured response.
|
|
|
148 |
Context: {context}
|
|
|
149 |
Question: {question}
|
|
|
150 |
Provide your response in the following format:
|
151 |
Analysis: Analyze the described plant condition
|
152 |
Treatment: Recommend relevant organic farming principles and specific homeopathic medicine(s) with exact potency and repetition frequency. Suggest a maximum of 4 medicines in the order of relevance for any single problem.
|
|
|
171 |
1000 pills or 250ml/500l per hectare,
|
172 |
2500 pills or 500ml/500l per hectare,
|
173 |
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
|
|
|
174 |
Recommendations: Provide couple of key pertinent recommendations based on the query
|
|
|
175 |
Remember to maintain a professional, clear tone and ensure all medicine recommendations include specific potency.
|
|
|
176 |
Answer:"""
|
177 |
|
178 |
+
# Create the QA chain with correct variables
|
179 |
+
qa = RetrievalQA.from_chain_type(
|
180 |
+
llm=llm,
|
181 |
+
chain_type="stuff",
|
182 |
+
retriever=retriever,
|
183 |
+
chain_type_kwargs={
|
184 |
+
"prompt": PromptTemplate(
|
185 |
+
template=prompt_template,
|
186 |
+
input_variables=["context", "question"]
|
187 |
+
)
|
188 |
+
}
|
189 |
+
)
|
190 |
|
191 |
+
# Create a separate LLMChain for fallback
|
192 |
fallback_template = """As an expert organic farming consultant with specialization in Agro-Homeopathy, analyze the following context and question to provide a clear, structured response.
|
|
|
193 |
Question: {question}
|
|
|
194 |
Format your response as follows:
|
195 |
Analysis: Analyze the described plant condition
|
196 |
Treatment: Recommend relevant organic farming principles and specific homeopathic medicine(s) with exact potency and repetition frequency. Suggest a maximum of 4 medicines in the order of relevance for any single problem.
|
|
|
215 |
1000 pills or 250ml/500l per hectare
|
216 |
2500 pills or 500ml/500l per hectare
|
217 |
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
|
|
|
218 |
Recommendations: Provide couple of key pertinent recommendations based on the query
|
|
|
219 |
Maintain a professional tone and ensure all medicine recommendations include specific potency.
|
|
|
220 |
Answer:"""
|
221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
fallback_prompt = PromptTemplate(template=fallback_template, input_variables=["question"])
|
223 |
fallback_chain = LLMChain(llm=llm, prompt=fallback_prompt)
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
chat_container = st.container()
|
226 |
+
|
227 |
st.markdown("""
|
228 |
+
<style>
|
229 |
+
.stButton>button {
|
230 |
+
color: black !important;
|
231 |
+
background-color: yellow !important;
|
232 |
+
}
|
233 |
+
</style>
|
|
|
|
|
|
|
|
|
|
|
234 |
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
+
with st.form(key='query_form'):
|
237 |
+
query = st.text_input("Ask your question:", value="")
|
238 |
+
submit_button = st.form_submit_button(label='Submit')
|
239 |
+
|
240 |
+
end_time = time.time()
|
241 |
+
#print(f"Setting up retrieval chain took {end_time - start_time:.4f} seconds")
|
242 |
+
start_time = time.time()
|
243 |
|
244 |
if submit_button and query:
|
245 |
+
with st.spinner("Generating response..."):
|
246 |
+
result = qa({"query": query})
|
247 |
+
if result['result'].strip() == "":
|
248 |
+
# If no result from PDF, use fallback chain
|
249 |
+
fallback_result = fallback_chain.run(query)
|
250 |
+
response = fallback_result
|
251 |
+
else:
|
252 |
+
response = result['result']
|
253 |
+
|
254 |
+
col1, col2 = st.columns([1, 10])
|
255 |
+
with col1:
|
256 |
+
st.image(human_image, width=80)
|
257 |
+
with col2:
|
258 |
+
st.markdown(f"{query}")
|
259 |
+
col1, col2 = st.columns([1, 10])
|
260 |
+
with col1:
|
261 |
+
st.image(robot_image, width=80)
|
262 |
+
with col2:
|
263 |
+
st.markdown(f"{response}")
|
264 |
+
|
265 |
+
st.markdown("---")
|
266 |
+
|
267 |
+
st.session_state["query"] = ""
|
268 |
+
|
269 |
+
end_time = time.time()
|