Spaces:
Sleeping
Sleeping
| import json | |
| import numpy as np | |
| from transformers import BertTokenizer | |
| from rank_bm25 import BM25Okapi | |
| import gradio as gr | |
| tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased") | |
| f = open('budu_search_syn_database.json') | |
| database = json.load(f) | |
| b25corpus = [x for x in database.values()] | |
| b25local_names = [x for x in database.keys()] | |
| bm25 = BM25Okapi(corpus=b25corpus) | |
| def predict_bm25(service): | |
| tokenized_query = tokenizer.tokenize(service.lower()) | |
| doc_scores = bm25.get_scores(tokenized_query) | |
| sorted_doc_indices = doc_scores.argsort()[::-1] | |
| sorted_local_names = np.array([b25local_names[i] for i in sorted_doc_indices]) | |
| scores = doc_scores[sorted_doc_indices] | |
| scores_filtered = np.argwhere(scores>0).reshape(-1) | |
| filtered_local_names = sorted_local_names[scores_filtered.tolist()].tolist() | |
| if len(filtered_local_names)>5: | |
| filtered_local_names = filtered_local_names[:5] | |
| return filtered_local_names | |
| demo = gr.Interface(fn=predict_bm25,inputs=gr.components.Textbox(label='Запрос пользователя'), | |
| outputs=[gr.components.Textbox(label='Рекомендованные услуги')], | |
| examples=[ | |
| ['ферритин'], | |
| ['кальций'], | |
| ['железо'], | |
| ['прием']]) | |
| if __name__ == "__main__": | |
| demo.launch() |