Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,41 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import numpy as np
|
| 3 |
-
|
| 4 |
-
from transformers import BertTokenizer
|
| 5 |
-
from rank_bm25 import BM25Okapi
|
| 6 |
-
import gradio as gr
|
| 7 |
-
|
| 8 |
-
tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased")
|
| 9 |
-
|
| 10 |
-
f = open('budu_search_syn_database.json')
|
| 11 |
-
|
| 12 |
-
database = json.load(f)
|
| 13 |
-
|
| 14 |
-
b25corpus = [x for x in database.values()]
|
| 15 |
-
b25local_names = [x for x in database.keys()]
|
| 16 |
-
bm25 = BM25Okapi(corpus=b25corpus)
|
| 17 |
-
|
| 18 |
-
def predict_bm25(service):
|
| 19 |
-
tokenized_query = tokenizer.tokenize(service.lower())
|
| 20 |
-
|
| 21 |
-
doc_scores = bm25.get_scores(tokenized_query)
|
| 22 |
-
sorted_doc_indices = doc_scores.argsort()[::-1]
|
| 23 |
-
|
| 24 |
-
sorted_local_names = np.array([b25local_names[i] for i in sorted_doc_indices])
|
| 25 |
-
scores = doc_scores[sorted_doc_indices]
|
| 26 |
-
scores_filtered = np.argwhere(scores>0).reshape(-1)
|
| 27 |
-
filtered_local_names = sorted_local_names[scores_filtered.tolist()].tolist()
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
['
|
| 36 |
-
['
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
demo.launch()
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
from transformers import BertTokenizer
|
| 5 |
+
from rank_bm25 import BM25Okapi
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased")
|
| 9 |
+
|
| 10 |
+
f = open('budu_search_syn_database.json')
|
| 11 |
+
|
| 12 |
+
database = json.load(f)
|
| 13 |
+
|
| 14 |
+
b25corpus = [x for x in database.values()]
|
| 15 |
+
b25local_names = [x for x in database.keys()]
|
| 16 |
+
bm25 = BM25Okapi(corpus=b25corpus)
|
| 17 |
+
|
| 18 |
+
def predict_bm25(service):
|
| 19 |
+
tokenized_query = tokenizer.tokenize(service.lower())
|
| 20 |
+
|
| 21 |
+
doc_scores = bm25.get_scores(tokenized_query)
|
| 22 |
+
sorted_doc_indices = doc_scores.argsort()[::-1]
|
| 23 |
+
|
| 24 |
+
sorted_local_names = np.array([b25local_names[i] for i in sorted_doc_indices])
|
| 25 |
+
scores = doc_scores[sorted_doc_indices]
|
| 26 |
+
scores_filtered = np.argwhere(scores>0).reshape(-1)
|
| 27 |
+
filtered_local_names = sorted_local_names[scores_filtered.tolist()].tolist()
|
| 28 |
+
if len(filtered_local_names)>5:
|
| 29 |
+
filtered_local_names = filtered_local_names[:5]
|
| 30 |
+
return filtered_local_names
|
| 31 |
+
|
| 32 |
+
demo = gr.Interface(fn=predict_bm25,inputs=gr.components.Textbox(label='Запрос пользователя'),
|
| 33 |
+
outputs=[gr.components.Textbox(label='Рекомендованные услуги')],
|
| 34 |
+
examples=[
|
| 35 |
+
['ферритин'],
|
| 36 |
+
['кальций'],
|
| 37 |
+
['железо'],
|
| 38 |
+
['прием']])
|
| 39 |
+
|
| 40 |
+
if __name__ == "__main__":
|
| 41 |
demo.launch()
|