File size: 16,895 Bytes
da557ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8131246
da557ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d13d40
 
 
 
da557ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ade45
da557ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import itertools
import re
from collections import Counter, defaultdict
from typing import Dict, List, NamedTuple
import argparse
import sys
import time
import threading
import itertools

import gradio as gr
import numpy as np
from numpy.linalg import norm
import nltk
from nltk.stem.snowball import SnowballStemmer
from nltk.tokenize import word_tokenize
nltk.download('punkt_tab')

def spinner(stop_event):
    spinner_chars = itertools.cycle(['-', '\\', '|', '/'])
    sys.stdout.write(f'{next(spinner_chars)}')
    sys.stdout.flush()
    time.sleep(0.1)
    while not stop_event.is_set():
        sys.stdout.write(f'\b{next(spinner_chars)}')
        sys.stdout.flush()
        time.sleep(0.1)
    print(f'\b \n')

# Create a threading event to stop the spinner
stop_event = threading.Event()

### File IO and processing

class Document(NamedTuple):
    doc_id: int
    author: List[str]
    title: List[str]
    keyword: List[str]
    abstract: List[str]

    def sections(self):
        return [self.author, self.title, self.keyword, self.abstract]

    def __repr__(self):
        return (f"doc_id: {self.doc_id}\n" +
            f"  author: {self.author}\n" +
            f"  title: {self.title}\n" +
            f"  keyword: {self.keyword}\n" +
            f"  abstract: {self.abstract}")


def read_stopwords(file):
    with open(file) as f:
        return set([x.strip() for x in f.readlines()])

stopwords = read_stopwords('common_words')

stemmer = SnowballStemmer('english')

def read_rels(file):
    '''

    Reads the file of related documents and returns a dictionary of query id -> list of related documents

    '''
    rels = {}
    with open(file) as f:
        for line in f:
            qid, rel = line.strip().split()
            qid = int(qid)
            rel = int(rel)
            if qid not in rels:
                rels[qid] = []
            rels[qid].append(rel)
    return rels

def read_docs(file):
    '''

    Reads the corpus into a list of Documents

    '''
    docs = [defaultdict(list)]  # empty 0 index
    category = ''
    with open(file) as f:
        i = 0
        for line in f:
            line = line.strip()
            if line.startswith('.I'):
                i = int(line[3:])
                docs.append(defaultdict(list))
            elif re.match(r'\.\w', line):
                category = line[1]
            elif line != '':
                for word in word_tokenize(line):
                    docs[i][category].append(word.lower())

    return [Document(i + 1, d['A'], d['T'], d['K'], d['W'])
        for i, d in enumerate(docs[1:])]

def read_docs_for_presentation(file):
    docs = [defaultdict(str)]  # empty 0 index
    category = ''
    with open(file) as f:
        i = 0
        for line in f:
            line = line.strip()
            if line.startswith('.I'):
                i = int(line[3:])
                docs.append(defaultdict(str))
            elif re.match(r'\.\w', line):
                category = line[1]
            elif line != '':
                if docs[i][category] == '':
                    docs[i][category] = line
                else:
                    if docs[i][category][-1] == '.':
                        docs[i][category] = f'{docs[i][category]} {line}'
                    else:
                        docs[i][category] = f'{docs[i][category]}. {line}'

    return [Document(i + 1, d['A'], d['T'], d['K'], d['W'])
        for i, d in enumerate(docs[1:])]

def stem_doc(doc: Document):
    return Document(doc.doc_id, *[[stemmer.stem(word) for word in sec]
        for sec in doc.sections()])

def stem_docs(docs: List[Document]):
    return [stem_doc(doc) for doc in docs]

def remove_stopwords_doc(doc: Document):
    return Document(doc.doc_id, *[[word for word in sec if word not in stopwords]
        for sec in doc.sections()])

def remove_stopwords(docs: List[Document]):
    return [remove_stopwords_doc(doc) for doc in docs]



### Term-Document Matrix

class TermWeights(NamedTuple):
    author: float
    title: float
    keyword: float
    abstract: float

def compute_doc_freqs(docs: List[Document]):
    '''

    Computes document frequency, i.e. how many documents contain a specific word

    '''
    freq = Counter()
    for doc in docs:
        words = set()
        for sec in doc.sections():
            for word in sec:
                words.add(word)
        for word in words:
            freq[word] += 1
    return freq

def compute_tf(doc: Document, doc_freqs: Dict[str, int], weights: list):
    vec = defaultdict(float)
    for word in doc.author:
        vec[word] += weights.author
    for word in doc.keyword:
        vec[word] += weights.keyword
    for word in doc.title:
        vec[word] += weights.title
    for word in doc.abstract:
        vec[word] += weights.abstract
    return dict(vec)  # convert back to a regular dict

def compute_tfidf(doc, doc_freqs, weights):
    tfidf = defaultdict(float)
    tf = compute_tf(doc, doc_freqs, weights)
    N = 3204
    for word in tf:
        idf = np.log((1+N) / (1+doc_freqs[word]))
        tfidf[word] = tf[word] * idf
    return dict(tfidf)  # convert back to a regular dict

def compute_boolean(doc, doc_freqs, weights):
    vec = defaultdict(float)
    for word in doc.author:
        vec[word] = weights.author
    for word in doc.keyword:
        vec[word] = weights.keyword
    for word in doc.title:
        vec[word] = weights.title
    for word in doc.abstract:
        vec[word] = weights.abstract
    return dict(vec)  # convert back to a regular dict



### Vector Similarity

def dictdot(x: Dict[str, float], y: Dict[str, float]):
    '''

    Computes the dot product of vectors x and y, represented as sparse dictionaries.

    '''
    keys = list(x.keys()) if len(x) < len(y) else list(y.keys())
    return sum(x.get(key, 0) * y.get(key, 0) for key in keys)

def cosine_sim_dict(x, y):
    '''

    Computes the cosine similarity between two sparse term vectors represented as dictionaries.

    '''
    num = dictdot(x, y)
    if num == 0:
        return 0
    return num / (norm(list(x.values())) * norm(list(y.values())))

def cosine_sim(x, y):
    if isinstance(x, dict):
        return cosine_sim_dict(x, y)
    denom = np.linalg.norm(x) * np.linalg.norm(y)
    if denom == 0:
        return 0
    return np.dot(x, y) / denom

def dice_sim(x, y):
    raise NotImplementedError
    num = 2 * dictdot(x, y)
    if num == 0:
        return 0
    denom = sum(list(x.values())) + sum(list(y.values()))
    ret = num / denom if denom != 0 else 0
    # if ret > 1 or ret < 0:
    #     breakpoint()
    return ret

def jaccard_sim(x, y):
    raise NotImplementedError
    num = dictdot(x, y)
    if num == 0:
        return 0
    # denom = norm(list(x.values())) ** 2 + norm(list(y.values())) ** 2 - num
    denom = sum(list(x.values())) + sum(list(y.values())) - num
    ret = num / denom if denom != 0 else 0
    # if ret > 1 or ret < 0:
    #     breakpoint()
    return ret

def overlap_sim(x, y):
    raise NotImplementedError
    num = dictdot(x, y)
    if num == 0:
        return 0
    # denom = min(norm(list(x.values())) ** 2, norm(list(y.values())) ** 2)
    denom = min(sum(list(x.values())), sum(list(y.values())))
    ret = num / denom if denom != 0 else 0
    # if ret > 1 or ret < 0:
    #     breakpoint()
    return ret


### Precision/Recall

def interpolate(x1, y1, x2, y2, x):
    m = (y2 - y1) / (x2 - x1)
    b = y1 - m * x1
    return m * x + b

def precision_at(recall: float, results: List[int], relevant: List[int]) -> float:
    '''

    This function should compute the precision at the specified recall level.

    If the recall level is in between two points, you should do a linear interpolation

    between the two closest points. For example, if you have 4 results

    (recall 0.25, 0.5, 0.75, and 1.0), and you need to compute recall @ 0.6, then do something like



    interpolate(0.5, prec @ 0.5, 0.75, prec @ 0.75, 0.6)



    Note that there is implicitly a point (recall=0, precision=1).



    `results` is a sorted list of document ids

    `relevant` is a list of relevant documents

    '''
    assert recall >= 0 and recall <= 1, f'Invalid recall: {recall}'
    recalls = [0]
    precisions = [1]
    recalls += [(i+1) / len(relevant) for i in range(len(relevant))]
    ranks = sorted([results.index(rel)+1 for rel in relevant])
    precisions += [(i+1) / rk for i, rk in enumerate(ranks)]

    idx = 0
    for i, rec in enumerate(recalls):
        if recall > rec:
            idx = i
    r1 = recalls[idx]
    r2 = recalls[idx+1]

    val = interpolate(r1, precisions[idx], r2, precisions[idx+1], recall)
    return val

def mean_precision1(results, relevant):
    return (precision_at(0.25, results, relevant) +
        precision_at(0.5, results, relevant) +
        precision_at(0.75, results, relevant)) / 3

def mean_precision2(results, relevant):
    return sum([precision_at((i+1)/10, results, relevant) for i in range(10)]) / 10

def norm_recall(results, relevant):
    N = len(results)
    num_rel = len(relevant)
    ranks = [results.index(rel) + 1 for rel in relevant]
    return 1 - (sum([ranks[i] for i in range(num_rel)]) - sum([i+1 for i in range(num_rel)])) / num_rel / (N - num_rel)

def norm_precision(results, relevant):
    N = len(results)
    num_rel = len(relevant)
    ranks = [results.index(rel) + 1 for rel in relevant]
    denum = N * np.log(N) - (N - num_rel) * np.log(N - num_rel) - num_rel * np.log(num_rel)
    return 1 - (sum([np.log(ranks[i]) for i in range(num_rel)]) - sum([np.log(i+1) for i in range(num_rel)])) / denum


### Extensions

# TODO: put any extensions here

def to_full_matrix(doc_vectors):
    '''

    Converts a list of sparse term vectors into a full term-document matrix.

    '''
    # a set of words in all documents
    words = set()
    for doc_vec in doc_vectors:
        words.update(doc_vec.keys())
    words = list(words)

    matrix = np.zeros((len(doc_vectors), len(words)))
    for i, doc_vec in enumerate(doc_vectors):
        for word, val in doc_vec.items():
            matrix[i, words.index(word)] = val
    return matrix, words

def sparse_svd(doc_vectors, rank):
    doc_matrix, words = to_full_matrix(doc_vectors)
    _, _, Vt = np.linalg.svd(doc_matrix)
    Vt_k = Vt[:rank, :]

    doc_matrix = doc_matrix @ Vt_k.T

    def project_fn(input_vector):
        output_vector = np.zeros(len(words))
        for word, val in input_vector.items():
            if word in words:
                output_vector[words.index(word)] = val
        return output_vector @ Vt_k.T

    return [vec for vec in doc_matrix], project_fn

def formated_output_for_doc(doc):
    res = ''
    res = res + '# ' + ' '.join(doc.title) + '\n'
    if doc.author:
        res = res + '  by ' + ' '.join(doc.author) + '\n'
    if doc.abstract:
        res = res + '  ' + ' '.join(doc.abstract) + '\n'
    return res

### Search

def setup():
    # args = parse_args()
    args = argparse.Namespace(use_svd=True, svd_rank=3000)

    print('Starting search engine ', end='')
    if args.use_svd:
        print('(with SVD) ', end='')

    # Start the spinner in a separate thread
    spinner_thread = threading.Thread(target=spinner, args=(stop_event,))
    spinner_thread.start()


    docs = read_docs('cacm.raw')
    # queries = read_docs('query.raw')
    # rels = read_rels('query.rels')
    stopwords = read_stopwords('common_words')

    term_func = compute_tfidf
    sim_func = cosine_sim
    svd_rank = args.svd_rank

    # for svd_rank, term, stem, removestop, sim, term_weights in itertools.product(*permutations):
    stem = True
    removestop = True
    term_weights = TermWeights(author=3, title=3, keyword=4, abstract=1)

    processed_docs = process_docs(docs, stem, removestop, stopwords)
    doc_freqs = compute_doc_freqs(processed_docs)
    doc_vectors = [term_func(doc, doc_freqs, term_weights) for doc in processed_docs]
    if args.use_svd:
        doc_vectors, svd_project_fn = sparse_svd(doc_vectors, svd_rank)

    # Stop the spinner
    stop_event.set()
    spinner_thread.join()

    def search_query(query):
        tmp_query_file = '/tmp/irhw2'
        with open(tmp_query_file, 'w') as f:
            print(f"""



.I 1

.W

 {query}

 """, file=f)
        queries = read_docs(tmp_query_file)
        processed_queries = process_docs(queries, stem, removestop, stopwords)

        query = processed_queries[0]
        query_vec = term_func(query, doc_freqs, term_weights)
        if args.use_svd:
            query_vec = svd_project_fn(query_vec)
        results = search(doc_vectors, query_vec, sim_func)
        return results

    docs_present = read_docs_for_presentation('cacm.raw')

    return search_query, docs_present

def process_docs(docs, stem, removestop, stopwords):
    processed_docs = docs
    if removestop:
        processed_docs = remove_stopwords(processed_docs)
    if stem:
        processed_docs = stem_docs(processed_docs)
    return processed_docs

def process_docs_and_queries(docs, queries, stem, removestop, stopwords):
    processed_docs = docs
    processed_queries = queries
    if removestop:
        processed_docs = remove_stopwords(processed_docs)
        processed_queries = remove_stopwords(processed_queries)
    if stem:
        processed_docs = stem_docs(processed_docs)
        processed_queries = stem_docs(processed_queries)
    return processed_docs, processed_queries


def search(doc_vectors, query_vec, sim):
    results_with_score = [(doc_id + 1, sim(query_vec, doc_vec))
                    for doc_id, doc_vec in enumerate(doc_vectors)]
    results_with_score = sorted(results_with_score, key=lambda x: -x[1])
    return results_with_score
    results = [x[0] for x in results_with_score]
    return results


def search_debug(docs, query, relevant, doc_vectors, query_vec, sim):
    results_with_score = [(doc_id + 1, sim(query_vec, doc_vec))
                    for doc_id, doc_vec in enumerate(doc_vectors)]
    results_with_score = sorted(results_with_score, key=lambda x: -x[1])
    results = [x[0] for x in results_with_score]

    print('Query:', query)
    print('Relevant docs: ', relevant)
    print()
    for doc_id, score in results_with_score[:10]:
        print('Score:', score)
        print(docs[doc_id - 1])
        print()

def parse_args():
    arg_parser = argparse.ArgumentParser()
    arg_parser.add_argument('--use_svd', action='store_true')
    arg_parser.add_argument('--svd_rank', type=int, default=3000)
    return arg_parser.parse_args()

search_query, docs = setup()

with gr.Blocks() as demo:
    gr.Markdown("# Search Engine")
    with gr.Row():
        query = gr.Textbox(label="Query", autofocus=True)

    # with gr.Row():
    #     search_results = gr.Textbox(lines=5, label="Results")
    #

    num_results_step = 5
    num_results = gr.State(num_results_step)

    @gr.render(inputs=[query, num_results], triggers=[query.submit, num_results.change])
    def render_results(query, num_res):
        if query.strip() != '':
            results =  search_query(query)[:num_res]
            for doc_id, score in results:
                doc = docs[doc_id - 1]
                html = f"""

<div style="margin: 30px 0">

<div style="display: flex; align-items: center; gap: 10px;">

<img src="https://www.cs.jhu.edu/favicon.ico" width="25px">

<div style="color: #202124; font-size: 14px;">{doc.author if doc.author.strip() else 'No author provided'}</div>

</div>

<div style="font-size: 20px; color: rgb(26, 13, 171); cursor: pointer; margin: 10px 0" onclick="alert('Just a mockup search engine, lol.')">{doc.title}</div>

<div style="color: rgb(71, 71, 71);">{doc.abstract if doc.abstract.strip() else 'No abstract provided'}<br>Relevance score: {score:.3f}</div>

</div>

"""
                gr.HTML(html)
            gr.HTML('<div style="margin: 50px"></div>')
#             more_btn = gr.HTML('''
# <div style="display: flex;justify-content: center; margin: 40px">
# <div style="color: rgb(26, 13, 171); font-size: 18px; font-weight: 600; cursor: pointer">More like this</div>
# </div>''')
            more_btn = gr.Button('More like this')
            more_btn.click(lambda x: x + num_results_step, num_results, num_results)

    query.change(lambda _: num_results_step, num_results, num_results)

if __name__ == '__main__':
    demo.launch(
        # server_name="0.0.0.0",
        # server_port=7861,
    )