Spaces:
Sleeping
Sleeping
- cacm.raw +0 -0
- common_words +429 -0
- hw2_part3_web.py +515 -0
cacm.raw
ADDED
The diff for this file is too large to render.
See raw diff
|
|
common_words
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a
|
2 |
+
about
|
3 |
+
above
|
4 |
+
accordingly
|
5 |
+
across
|
6 |
+
after
|
7 |
+
afterwards
|
8 |
+
again
|
9 |
+
against
|
10 |
+
all
|
11 |
+
almost
|
12 |
+
alone
|
13 |
+
along
|
14 |
+
already
|
15 |
+
also
|
16 |
+
although
|
17 |
+
always
|
18 |
+
am
|
19 |
+
among
|
20 |
+
amongst
|
21 |
+
an
|
22 |
+
and
|
23 |
+
another
|
24 |
+
any
|
25 |
+
anybody
|
26 |
+
anyhow
|
27 |
+
anyone
|
28 |
+
anything
|
29 |
+
anywhere
|
30 |
+
apart
|
31 |
+
are
|
32 |
+
around
|
33 |
+
as
|
34 |
+
aside
|
35 |
+
at
|
36 |
+
away
|
37 |
+
awfully
|
38 |
+
b
|
39 |
+
be
|
40 |
+
became
|
41 |
+
because
|
42 |
+
become
|
43 |
+
becomes
|
44 |
+
becoming
|
45 |
+
been
|
46 |
+
before
|
47 |
+
beforehand
|
48 |
+
behind
|
49 |
+
being
|
50 |
+
below
|
51 |
+
beside
|
52 |
+
besides
|
53 |
+
best
|
54 |
+
better
|
55 |
+
between
|
56 |
+
beyond
|
57 |
+
both
|
58 |
+
brief
|
59 |
+
but
|
60 |
+
by
|
61 |
+
c
|
62 |
+
can
|
63 |
+
cannot
|
64 |
+
cant
|
65 |
+
certain
|
66 |
+
co
|
67 |
+
consequently
|
68 |
+
could
|
69 |
+
d
|
70 |
+
did
|
71 |
+
do
|
72 |
+
does
|
73 |
+
doing
|
74 |
+
done
|
75 |
+
down
|
76 |
+
downwards
|
77 |
+
during
|
78 |
+
e
|
79 |
+
each
|
80 |
+
eg
|
81 |
+
eight
|
82 |
+
either
|
83 |
+
else
|
84 |
+
elsewhere
|
85 |
+
enough
|
86 |
+
et
|
87 |
+
etc
|
88 |
+
even
|
89 |
+
ever
|
90 |
+
every
|
91 |
+
everybody
|
92 |
+
everyone
|
93 |
+
everything
|
94 |
+
everywhere
|
95 |
+
ex
|
96 |
+
except
|
97 |
+
f
|
98 |
+
far
|
99 |
+
few
|
100 |
+
fifth
|
101 |
+
first
|
102 |
+
five
|
103 |
+
for
|
104 |
+
former
|
105 |
+
formerly
|
106 |
+
forth
|
107 |
+
four
|
108 |
+
from
|
109 |
+
further
|
110 |
+
furthermore
|
111 |
+
g
|
112 |
+
get
|
113 |
+
gets
|
114 |
+
go
|
115 |
+
gone
|
116 |
+
got
|
117 |
+
h
|
118 |
+
had
|
119 |
+
hardly
|
120 |
+
has
|
121 |
+
have
|
122 |
+
having
|
123 |
+
he
|
124 |
+
hence
|
125 |
+
her
|
126 |
+
here
|
127 |
+
hereafter
|
128 |
+
hereby
|
129 |
+
herein
|
130 |
+
hereupon
|
131 |
+
hers
|
132 |
+
herself
|
133 |
+
him
|
134 |
+
himself
|
135 |
+
his
|
136 |
+
hither
|
137 |
+
how
|
138 |
+
howbeit
|
139 |
+
however
|
140 |
+
i
|
141 |
+
ie
|
142 |
+
if
|
143 |
+
immediate
|
144 |
+
in
|
145 |
+
inasmuch
|
146 |
+
inc
|
147 |
+
indeed
|
148 |
+
inner
|
149 |
+
insofar
|
150 |
+
instead
|
151 |
+
into
|
152 |
+
inward
|
153 |
+
is
|
154 |
+
it
|
155 |
+
its
|
156 |
+
itself
|
157 |
+
j
|
158 |
+
just
|
159 |
+
k
|
160 |
+
keep
|
161 |
+
kept
|
162 |
+
l
|
163 |
+
last
|
164 |
+
latter
|
165 |
+
latterly
|
166 |
+
least
|
167 |
+
less
|
168 |
+
lest
|
169 |
+
like
|
170 |
+
little
|
171 |
+
ltd
|
172 |
+
m
|
173 |
+
many
|
174 |
+
may
|
175 |
+
me
|
176 |
+
meanwhile
|
177 |
+
might
|
178 |
+
more
|
179 |
+
moreover
|
180 |
+
most
|
181 |
+
mostly
|
182 |
+
much
|
183 |
+
must
|
184 |
+
my
|
185 |
+
myself
|
186 |
+
n
|
187 |
+
namely
|
188 |
+
near
|
189 |
+
neither
|
190 |
+
never
|
191 |
+
nevertheless
|
192 |
+
new
|
193 |
+
next
|
194 |
+
nine
|
195 |
+
no
|
196 |
+
nobody
|
197 |
+
none
|
198 |
+
noone
|
199 |
+
nor
|
200 |
+
not
|
201 |
+
nothing
|
202 |
+
novel
|
203 |
+
now
|
204 |
+
nowhere
|
205 |
+
o
|
206 |
+
of
|
207 |
+
off
|
208 |
+
often
|
209 |
+
oh
|
210 |
+
old
|
211 |
+
on
|
212 |
+
once
|
213 |
+
one
|
214 |
+
ones
|
215 |
+
only
|
216 |
+
onto
|
217 |
+
or
|
218 |
+
other
|
219 |
+
others
|
220 |
+
otherwise
|
221 |
+
ought
|
222 |
+
our
|
223 |
+
ours
|
224 |
+
ourselves
|
225 |
+
out
|
226 |
+
outside
|
227 |
+
over
|
228 |
+
overall
|
229 |
+
own
|
230 |
+
p
|
231 |
+
particular
|
232 |
+
particularly
|
233 |
+
per
|
234 |
+
perhaps
|
235 |
+
please
|
236 |
+
plus
|
237 |
+
probably
|
238 |
+
q
|
239 |
+
que
|
240 |
+
quite
|
241 |
+
r
|
242 |
+
rather
|
243 |
+
really
|
244 |
+
relatively
|
245 |
+
respectively
|
246 |
+
right
|
247 |
+
s
|
248 |
+
said
|
249 |
+
same
|
250 |
+
second
|
251 |
+
secondly
|
252 |
+
see
|
253 |
+
seem
|
254 |
+
seemed
|
255 |
+
seeming
|
256 |
+
seems
|
257 |
+
self
|
258 |
+
selves
|
259 |
+
sensible
|
260 |
+
serious
|
261 |
+
seven
|
262 |
+
several
|
263 |
+
shall
|
264 |
+
she
|
265 |
+
should
|
266 |
+
since
|
267 |
+
six
|
268 |
+
so
|
269 |
+
some
|
270 |
+
somebody
|
271 |
+
somehow
|
272 |
+
someone
|
273 |
+
something
|
274 |
+
sometime
|
275 |
+
sometimes
|
276 |
+
somewhat
|
277 |
+
somewhere
|
278 |
+
still
|
279 |
+
sub
|
280 |
+
such
|
281 |
+
sup
|
282 |
+
t
|
283 |
+
than
|
284 |
+
that
|
285 |
+
the
|
286 |
+
their
|
287 |
+
theirs
|
288 |
+
them
|
289 |
+
themselves
|
290 |
+
then
|
291 |
+
thence
|
292 |
+
there
|
293 |
+
thereafter
|
294 |
+
thereby
|
295 |
+
therefore
|
296 |
+
therein
|
297 |
+
thereupon
|
298 |
+
these
|
299 |
+
they
|
300 |
+
third
|
301 |
+
this
|
302 |
+
thorough
|
303 |
+
thoroughly
|
304 |
+
those
|
305 |
+
though
|
306 |
+
three
|
307 |
+
through
|
308 |
+
throughout
|
309 |
+
thru
|
310 |
+
thus
|
311 |
+
to
|
312 |
+
together
|
313 |
+
too
|
314 |
+
toward
|
315 |
+
towards
|
316 |
+
twice
|
317 |
+
two
|
318 |
+
u
|
319 |
+
under
|
320 |
+
until
|
321 |
+
unto
|
322 |
+
up
|
323 |
+
upon
|
324 |
+
us
|
325 |
+
v
|
326 |
+
various
|
327 |
+
very
|
328 |
+
via
|
329 |
+
vs
|
330 |
+
viz
|
331 |
+
w
|
332 |
+
was
|
333 |
+
we
|
334 |
+
well
|
335 |
+
went
|
336 |
+
were
|
337 |
+
what
|
338 |
+
whatever
|
339 |
+
when
|
340 |
+
whence
|
341 |
+
whenever
|
342 |
+
where
|
343 |
+
whereafter
|
344 |
+
whereas
|
345 |
+
whereby
|
346 |
+
wherein
|
347 |
+
whereupon
|
348 |
+
wherever
|
349 |
+
whether
|
350 |
+
which
|
351 |
+
while
|
352 |
+
whither
|
353 |
+
who
|
354 |
+
whoever
|
355 |
+
whole
|
356 |
+
whom
|
357 |
+
whose
|
358 |
+
why
|
359 |
+
will
|
360 |
+
with
|
361 |
+
within
|
362 |
+
without
|
363 |
+
would
|
364 |
+
x
|
365 |
+
y
|
366 |
+
yet
|
367 |
+
you
|
368 |
+
your
|
369 |
+
yours
|
370 |
+
yourself
|
371 |
+
yourselves
|
372 |
+
z
|
373 |
+
zero
|
374 |
+
/*
|
375 |
+
manual
|
376 |
+
unix
|
377 |
+
programmer's
|
378 |
+
file
|
379 |
+
files
|
380 |
+
used
|
381 |
+
name
|
382 |
+
specified
|
383 |
+
value
|
384 |
+
given
|
385 |
+
return
|
386 |
+
use
|
387 |
+
following
|
388 |
+
current
|
389 |
+
using
|
390 |
+
normally
|
391 |
+
returns
|
392 |
+
returned
|
393 |
+
causes
|
394 |
+
described
|
395 |
+
contains
|
396 |
+
example
|
397 |
+
possible
|
398 |
+
useful
|
399 |
+
available
|
400 |
+
associated
|
401 |
+
would
|
402 |
+
cause
|
403 |
+
provides
|
404 |
+
taken
|
405 |
+
unless
|
406 |
+
sent
|
407 |
+
followed
|
408 |
+
indicates
|
409 |
+
currently
|
410 |
+
necessary
|
411 |
+
specify
|
412 |
+
contain
|
413 |
+
indicate
|
414 |
+
appear
|
415 |
+
different
|
416 |
+
indicated
|
417 |
+
containing
|
418 |
+
gives
|
419 |
+
placed
|
420 |
+
uses
|
421 |
+
appropriate
|
422 |
+
automatically
|
423 |
+
ignored
|
424 |
+
changes
|
425 |
+
way
|
426 |
+
usually
|
427 |
+
allows
|
428 |
+
corresponding
|
429 |
+
specifying
|
hw2_part3_web.py
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import re
|
3 |
+
from collections import Counter, defaultdict
|
4 |
+
from typing import Dict, List, NamedTuple
|
5 |
+
import argparse
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
import threading
|
9 |
+
import itertools
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import numpy as np
|
13 |
+
from numpy.linalg import norm
|
14 |
+
import nltk
|
15 |
+
from nltk.stem.snowball import SnowballStemmer
|
16 |
+
from nltk.tokenize import word_tokenize
|
17 |
+
# nltk.download('punkt_tab')
|
18 |
+
|
19 |
+
def spinner(stop_event):
|
20 |
+
spinner_chars = itertools.cycle(['-', '\\', '|', '/'])
|
21 |
+
sys.stdout.write(f'{next(spinner_chars)}')
|
22 |
+
sys.stdout.flush()
|
23 |
+
time.sleep(0.1)
|
24 |
+
while not stop_event.is_set():
|
25 |
+
sys.stdout.write(f'\b{next(spinner_chars)}')
|
26 |
+
sys.stdout.flush()
|
27 |
+
time.sleep(0.1)
|
28 |
+
print(f'\b \n')
|
29 |
+
|
30 |
+
# Create a threading event to stop the spinner
|
31 |
+
stop_event = threading.Event()
|
32 |
+
|
33 |
+
### File IO and processing
|
34 |
+
|
35 |
+
class Document(NamedTuple):
|
36 |
+
doc_id: int
|
37 |
+
author: List[str]
|
38 |
+
title: List[str]
|
39 |
+
keyword: List[str]
|
40 |
+
abstract: List[str]
|
41 |
+
|
42 |
+
def sections(self):
|
43 |
+
return [self.author, self.title, self.keyword, self.abstract]
|
44 |
+
|
45 |
+
def __repr__(self):
|
46 |
+
return (f"doc_id: {self.doc_id}\n" +
|
47 |
+
f" author: {self.author}\n" +
|
48 |
+
f" title: {self.title}\n" +
|
49 |
+
f" keyword: {self.keyword}\n" +
|
50 |
+
f" abstract: {self.abstract}")
|
51 |
+
|
52 |
+
|
53 |
+
def read_stopwords(file):
|
54 |
+
with open(file) as f:
|
55 |
+
return set([x.strip() for x in f.readlines()])
|
56 |
+
|
57 |
+
stopwords = read_stopwords('common_words')
|
58 |
+
|
59 |
+
stemmer = SnowballStemmer('english')
|
60 |
+
|
61 |
+
def read_rels(file):
|
62 |
+
'''
|
63 |
+
Reads the file of related documents and returns a dictionary of query id -> list of related documents
|
64 |
+
'''
|
65 |
+
rels = {}
|
66 |
+
with open(file) as f:
|
67 |
+
for line in f:
|
68 |
+
qid, rel = line.strip().split()
|
69 |
+
qid = int(qid)
|
70 |
+
rel = int(rel)
|
71 |
+
if qid not in rels:
|
72 |
+
rels[qid] = []
|
73 |
+
rels[qid].append(rel)
|
74 |
+
return rels
|
75 |
+
|
76 |
+
def read_docs(file):
|
77 |
+
'''
|
78 |
+
Reads the corpus into a list of Documents
|
79 |
+
'''
|
80 |
+
docs = [defaultdict(list)] # empty 0 index
|
81 |
+
category = ''
|
82 |
+
with open(file) as f:
|
83 |
+
i = 0
|
84 |
+
for line in f:
|
85 |
+
line = line.strip()
|
86 |
+
if line.startswith('.I'):
|
87 |
+
i = int(line[3:])
|
88 |
+
docs.append(defaultdict(list))
|
89 |
+
elif re.match(r'\.\w', line):
|
90 |
+
category = line[1]
|
91 |
+
elif line != '':
|
92 |
+
for word in word_tokenize(line):
|
93 |
+
docs[i][category].append(word.lower())
|
94 |
+
|
95 |
+
return [Document(i + 1, d['A'], d['T'], d['K'], d['W'])
|
96 |
+
for i, d in enumerate(docs[1:])]
|
97 |
+
|
98 |
+
def read_docs_for_presentation(file):
|
99 |
+
docs = [defaultdict(str)] # empty 0 index
|
100 |
+
category = ''
|
101 |
+
with open(file) as f:
|
102 |
+
i = 0
|
103 |
+
for line in f:
|
104 |
+
line = line.strip()
|
105 |
+
if line.startswith('.I'):
|
106 |
+
i = int(line[3:])
|
107 |
+
docs.append(defaultdict(str))
|
108 |
+
elif re.match(r'\.\w', line):
|
109 |
+
category = line[1]
|
110 |
+
elif line != '':
|
111 |
+
if docs[i][category] == '':
|
112 |
+
docs[i][category] = line
|
113 |
+
else:
|
114 |
+
if docs[i][category][-1] == '.':
|
115 |
+
docs[i][category] = f'{docs[i][category]} {line}'
|
116 |
+
else:
|
117 |
+
docs[i][category] = f'{docs[i][category]}. {line}'
|
118 |
+
|
119 |
+
return [Document(i + 1, d['A'], d['T'], d['K'], d['W'])
|
120 |
+
for i, d in enumerate(docs[1:])]
|
121 |
+
|
122 |
+
def stem_doc(doc: Document):
|
123 |
+
return Document(doc.doc_id, *[[stemmer.stem(word) for word in sec]
|
124 |
+
for sec in doc.sections()])
|
125 |
+
|
126 |
+
def stem_docs(docs: List[Document]):
|
127 |
+
return [stem_doc(doc) for doc in docs]
|
128 |
+
|
129 |
+
def remove_stopwords_doc(doc: Document):
|
130 |
+
return Document(doc.doc_id, *[[word for word in sec if word not in stopwords]
|
131 |
+
for sec in doc.sections()])
|
132 |
+
|
133 |
+
def remove_stopwords(docs: List[Document]):
|
134 |
+
return [remove_stopwords_doc(doc) for doc in docs]
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
### Term-Document Matrix
|
139 |
+
|
140 |
+
class TermWeights(NamedTuple):
|
141 |
+
author: float
|
142 |
+
title: float
|
143 |
+
keyword: float
|
144 |
+
abstract: float
|
145 |
+
|
146 |
+
def compute_doc_freqs(docs: List[Document]):
|
147 |
+
'''
|
148 |
+
Computes document frequency, i.e. how many documents contain a specific word
|
149 |
+
'''
|
150 |
+
freq = Counter()
|
151 |
+
for doc in docs:
|
152 |
+
words = set()
|
153 |
+
for sec in doc.sections():
|
154 |
+
for word in sec:
|
155 |
+
words.add(word)
|
156 |
+
for word in words:
|
157 |
+
freq[word] += 1
|
158 |
+
return freq
|
159 |
+
|
160 |
+
def compute_tf(doc: Document, doc_freqs: Dict[str, int], weights: list):
|
161 |
+
vec = defaultdict(float)
|
162 |
+
for word in doc.author:
|
163 |
+
vec[word] += weights.author
|
164 |
+
for word in doc.keyword:
|
165 |
+
vec[word] += weights.keyword
|
166 |
+
for word in doc.title:
|
167 |
+
vec[word] += weights.title
|
168 |
+
for word in doc.abstract:
|
169 |
+
vec[word] += weights.abstract
|
170 |
+
return dict(vec) # convert back to a regular dict
|
171 |
+
|
172 |
+
def compute_tfidf(doc, doc_freqs, weights):
|
173 |
+
tfidf = defaultdict(float)
|
174 |
+
tf = compute_tf(doc, doc_freqs, weights)
|
175 |
+
N = 3204
|
176 |
+
for word in tf:
|
177 |
+
idf = np.log((1+N) / (1+doc_freqs[word]))
|
178 |
+
tfidf[word] = tf[word] * idf
|
179 |
+
return dict(tfidf) # convert back to a regular dict
|
180 |
+
|
181 |
+
def compute_boolean(doc, doc_freqs, weights):
|
182 |
+
vec = defaultdict(float)
|
183 |
+
for word in doc.author:
|
184 |
+
vec[word] = weights.author
|
185 |
+
for word in doc.keyword:
|
186 |
+
vec[word] = weights.keyword
|
187 |
+
for word in doc.title:
|
188 |
+
vec[word] = weights.title
|
189 |
+
for word in doc.abstract:
|
190 |
+
vec[word] = weights.abstract
|
191 |
+
return dict(vec) # convert back to a regular dict
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
### Vector Similarity
|
196 |
+
|
197 |
+
def dictdot(x: Dict[str, float], y: Dict[str, float]):
|
198 |
+
'''
|
199 |
+
Computes the dot product of vectors x and y, represented as sparse dictionaries.
|
200 |
+
'''
|
201 |
+
keys = list(x.keys()) if len(x) < len(y) else list(y.keys())
|
202 |
+
return sum(x.get(key, 0) * y.get(key, 0) for key in keys)
|
203 |
+
|
204 |
+
def cosine_sim_dict(x, y):
|
205 |
+
'''
|
206 |
+
Computes the cosine similarity between two sparse term vectors represented as dictionaries.
|
207 |
+
'''
|
208 |
+
num = dictdot(x, y)
|
209 |
+
if num == 0:
|
210 |
+
return 0
|
211 |
+
return num / (norm(list(x.values())) * norm(list(y.values())))
|
212 |
+
|
213 |
+
def cosine_sim(x, y):
|
214 |
+
if isinstance(x, dict):
|
215 |
+
return cosine_sim_dict(x, y)
|
216 |
+
return np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y))
|
217 |
+
|
218 |
+
def dice_sim(x, y):
|
219 |
+
raise NotImplementedError
|
220 |
+
num = 2 * dictdot(x, y)
|
221 |
+
if num == 0:
|
222 |
+
return 0
|
223 |
+
denom = sum(list(x.values())) + sum(list(y.values()))
|
224 |
+
ret = num / denom if denom != 0 else 0
|
225 |
+
# if ret > 1 or ret < 0:
|
226 |
+
# breakpoint()
|
227 |
+
return ret
|
228 |
+
|
229 |
+
def jaccard_sim(x, y):
|
230 |
+
raise NotImplementedError
|
231 |
+
num = dictdot(x, y)
|
232 |
+
if num == 0:
|
233 |
+
return 0
|
234 |
+
# denom = norm(list(x.values())) ** 2 + norm(list(y.values())) ** 2 - num
|
235 |
+
denom = sum(list(x.values())) + sum(list(y.values())) - num
|
236 |
+
ret = num / denom if denom != 0 else 0
|
237 |
+
# if ret > 1 or ret < 0:
|
238 |
+
# breakpoint()
|
239 |
+
return ret
|
240 |
+
|
241 |
+
def overlap_sim(x, y):
|
242 |
+
raise NotImplementedError
|
243 |
+
num = dictdot(x, y)
|
244 |
+
if num == 0:
|
245 |
+
return 0
|
246 |
+
# denom = min(norm(list(x.values())) ** 2, norm(list(y.values())) ** 2)
|
247 |
+
denom = min(sum(list(x.values())), sum(list(y.values())))
|
248 |
+
ret = num / denom if denom != 0 else 0
|
249 |
+
# if ret > 1 or ret < 0:
|
250 |
+
# breakpoint()
|
251 |
+
return ret
|
252 |
+
|
253 |
+
|
254 |
+
### Precision/Recall
|
255 |
+
|
256 |
+
def interpolate(x1, y1, x2, y2, x):
|
257 |
+
m = (y2 - y1) / (x2 - x1)
|
258 |
+
b = y1 - m * x1
|
259 |
+
return m * x + b
|
260 |
+
|
261 |
+
def precision_at(recall: float, results: List[int], relevant: List[int]) -> float:
|
262 |
+
'''
|
263 |
+
This function should compute the precision at the specified recall level.
|
264 |
+
If the recall level is in between two points, you should do a linear interpolation
|
265 |
+
between the two closest points. For example, if you have 4 results
|
266 |
+
(recall 0.25, 0.5, 0.75, and 1.0), and you need to compute recall @ 0.6, then do something like
|
267 |
+
|
268 |
+
interpolate(0.5, prec @ 0.5, 0.75, prec @ 0.75, 0.6)
|
269 |
+
|
270 |
+
Note that there is implicitly a point (recall=0, precision=1).
|
271 |
+
|
272 |
+
`results` is a sorted list of document ids
|
273 |
+
`relevant` is a list of relevant documents
|
274 |
+
'''
|
275 |
+
assert recall >= 0 and recall <= 1, f'Invalid recall: {recall}'
|
276 |
+
recalls = [0]
|
277 |
+
precisions = [1]
|
278 |
+
recalls += [(i+1) / len(relevant) for i in range(len(relevant))]
|
279 |
+
ranks = sorted([results.index(rel)+1 for rel in relevant])
|
280 |
+
precisions += [(i+1) / rk for i, rk in enumerate(ranks)]
|
281 |
+
|
282 |
+
idx = 0
|
283 |
+
for i, rec in enumerate(recalls):
|
284 |
+
if recall > rec:
|
285 |
+
idx = i
|
286 |
+
r1 = recalls[idx]
|
287 |
+
r2 = recalls[idx+1]
|
288 |
+
|
289 |
+
val = interpolate(r1, precisions[idx], r2, precisions[idx+1], recall)
|
290 |
+
return val
|
291 |
+
|
292 |
+
def mean_precision1(results, relevant):
|
293 |
+
return (precision_at(0.25, results, relevant) +
|
294 |
+
precision_at(0.5, results, relevant) +
|
295 |
+
precision_at(0.75, results, relevant)) / 3
|
296 |
+
|
297 |
+
def mean_precision2(results, relevant):
|
298 |
+
return sum([precision_at((i+1)/10, results, relevant) for i in range(10)]) / 10
|
299 |
+
|
300 |
+
def norm_recall(results, relevant):
|
301 |
+
N = len(results)
|
302 |
+
num_rel = len(relevant)
|
303 |
+
ranks = [results.index(rel) + 1 for rel in relevant]
|
304 |
+
return 1 - (sum([ranks[i] for i in range(num_rel)]) - sum([i+1 for i in range(num_rel)])) / num_rel / (N - num_rel)
|
305 |
+
|
306 |
+
def norm_precision(results, relevant):
|
307 |
+
N = len(results)
|
308 |
+
num_rel = len(relevant)
|
309 |
+
ranks = [results.index(rel) + 1 for rel in relevant]
|
310 |
+
denum = N * np.log(N) - (N - num_rel) * np.log(N - num_rel) - num_rel * np.log(num_rel)
|
311 |
+
return 1 - (sum([np.log(ranks[i]) for i in range(num_rel)]) - sum([np.log(i+1) for i in range(num_rel)])) / denum
|
312 |
+
|
313 |
+
|
314 |
+
### Extensions
|
315 |
+
|
316 |
+
# TODO: put any extensions here
|
317 |
+
|
318 |
+
def to_full_matrix(doc_vectors):
|
319 |
+
'''
|
320 |
+
Converts a list of sparse term vectors into a full term-document matrix.
|
321 |
+
'''
|
322 |
+
# a set of words in all documents
|
323 |
+
words = set()
|
324 |
+
for doc_vec in doc_vectors:
|
325 |
+
words.update(doc_vec.keys())
|
326 |
+
words = list(words)
|
327 |
+
|
328 |
+
matrix = np.zeros((len(doc_vectors), len(words)))
|
329 |
+
for i, doc_vec in enumerate(doc_vectors):
|
330 |
+
for word, val in doc_vec.items():
|
331 |
+
matrix[i, words.index(word)] = val
|
332 |
+
return matrix, words
|
333 |
+
|
334 |
+
def sparse_svd(doc_vectors, rank):
|
335 |
+
doc_matrix, words = to_full_matrix(doc_vectors)
|
336 |
+
_, _, Vt = np.linalg.svd(doc_matrix)
|
337 |
+
Vt_k = Vt[:rank, :]
|
338 |
+
|
339 |
+
doc_matrix = doc_matrix @ Vt_k.T
|
340 |
+
|
341 |
+
def project_fn(input_vector):
|
342 |
+
output_vector = np.zeros(len(words))
|
343 |
+
for word, val in input_vector.items():
|
344 |
+
if word in words:
|
345 |
+
output_vector[words.index(word)] = val
|
346 |
+
return output_vector @ Vt_k.T
|
347 |
+
|
348 |
+
return [vec for vec in doc_matrix], project_fn
|
349 |
+
|
350 |
+
def formated_output_for_doc(doc):
|
351 |
+
res = ''
|
352 |
+
res = res + '# ' + ' '.join(doc.title) + '\n'
|
353 |
+
if doc.author:
|
354 |
+
res = res + ' by ' + ' '.join(doc.author) + '\n'
|
355 |
+
if doc.abstract:
|
356 |
+
res = res + ' ' + ' '.join(doc.abstract) + '\n'
|
357 |
+
return res
|
358 |
+
|
359 |
+
### Search
|
360 |
+
|
361 |
+
def setup():
|
362 |
+
# args = parse_args()
|
363 |
+
args = argparse.Namespace(use_svd=True, svd_rank=3000)
|
364 |
+
|
365 |
+
print('Starting search engine ', end='')
|
366 |
+
if args.use_svd:
|
367 |
+
print('(with SVD) ', end='')
|
368 |
+
|
369 |
+
# Start the spinner in a separate thread
|
370 |
+
spinner_thread = threading.Thread(target=spinner, args=(stop_event,))
|
371 |
+
spinner_thread.start()
|
372 |
+
|
373 |
+
|
374 |
+
docs = read_docs('cacm.raw')
|
375 |
+
# queries = read_docs('query.raw')
|
376 |
+
# rels = read_rels('query.rels')
|
377 |
+
stopwords = read_stopwords('common_words')
|
378 |
+
|
379 |
+
term_func = compute_tfidf
|
380 |
+
sim_func = cosine_sim
|
381 |
+
svd_rank = args.svd_rank
|
382 |
+
|
383 |
+
# for svd_rank, term, stem, removestop, sim, term_weights in itertools.product(*permutations):
|
384 |
+
stem = True
|
385 |
+
removestop = True
|
386 |
+
term_weights = TermWeights(author=3, title=3, keyword=4, abstract=1)
|
387 |
+
|
388 |
+
processed_docs = process_docs(docs, stem, removestop, stopwords)
|
389 |
+
doc_freqs = compute_doc_freqs(processed_docs)
|
390 |
+
doc_vectors = [term_func(doc, doc_freqs, term_weights) for doc in processed_docs]
|
391 |
+
if args.use_svd:
|
392 |
+
doc_vectors, svd_project_fn = sparse_svd(doc_vectors, svd_rank)
|
393 |
+
|
394 |
+
# Stop the spinner
|
395 |
+
stop_event.set()
|
396 |
+
spinner_thread.join()
|
397 |
+
|
398 |
+
def search_query(query):
|
399 |
+
tmp_query_file = '/tmp/irhw2'
|
400 |
+
with open(tmp_query_file, 'w') as f:
|
401 |
+
print(f"""
|
402 |
+
|
403 |
+
.I 1
|
404 |
+
.W
|
405 |
+
{query}
|
406 |
+
""", file=f)
|
407 |
+
queries = read_docs(tmp_query_file)
|
408 |
+
processed_queries = process_docs(queries, stem, removestop, stopwords)
|
409 |
+
|
410 |
+
query = processed_queries[0]
|
411 |
+
query_vec = term_func(query, doc_freqs, term_weights)
|
412 |
+
if args.use_svd:
|
413 |
+
query_vec = svd_project_fn(query_vec)
|
414 |
+
results = search(doc_vectors, query_vec, sim_func)
|
415 |
+
return results
|
416 |
+
|
417 |
+
docs_present = read_docs_for_presentation('cacm.raw')
|
418 |
+
|
419 |
+
return search_query, docs_present
|
420 |
+
|
421 |
+
def process_docs(docs, stem, removestop, stopwords):
|
422 |
+
processed_docs = docs
|
423 |
+
if removestop:
|
424 |
+
processed_docs = remove_stopwords(processed_docs)
|
425 |
+
if stem:
|
426 |
+
processed_docs = stem_docs(processed_docs)
|
427 |
+
return processed_docs
|
428 |
+
|
429 |
+
def process_docs_and_queries(docs, queries, stem, removestop, stopwords):
|
430 |
+
processed_docs = docs
|
431 |
+
processed_queries = queries
|
432 |
+
if removestop:
|
433 |
+
processed_docs = remove_stopwords(processed_docs)
|
434 |
+
processed_queries = remove_stopwords(processed_queries)
|
435 |
+
if stem:
|
436 |
+
processed_docs = stem_docs(processed_docs)
|
437 |
+
processed_queries = stem_docs(processed_queries)
|
438 |
+
return processed_docs, processed_queries
|
439 |
+
|
440 |
+
|
441 |
+
def search(doc_vectors, query_vec, sim):
|
442 |
+
results_with_score = [(doc_id + 1, sim(query_vec, doc_vec))
|
443 |
+
for doc_id, doc_vec in enumerate(doc_vectors)]
|
444 |
+
results_with_score = sorted(results_with_score, key=lambda x: -x[1])
|
445 |
+
return results_with_score
|
446 |
+
results = [x[0] for x in results_with_score]
|
447 |
+
return results
|
448 |
+
|
449 |
+
|
450 |
+
def search_debug(docs, query, relevant, doc_vectors, query_vec, sim):
|
451 |
+
results_with_score = [(doc_id + 1, sim(query_vec, doc_vec))
|
452 |
+
for doc_id, doc_vec in enumerate(doc_vectors)]
|
453 |
+
results_with_score = sorted(results_with_score, key=lambda x: -x[1])
|
454 |
+
results = [x[0] for x in results_with_score]
|
455 |
+
|
456 |
+
print('Query:', query)
|
457 |
+
print('Relevant docs: ', relevant)
|
458 |
+
print()
|
459 |
+
for doc_id, score in results_with_score[:10]:
|
460 |
+
print('Score:', score)
|
461 |
+
print(docs[doc_id - 1])
|
462 |
+
print()
|
463 |
+
|
464 |
+
def parse_args():
|
465 |
+
arg_parser = argparse.ArgumentParser()
|
466 |
+
arg_parser.add_argument('--use_svd', action='store_true')
|
467 |
+
arg_parser.add_argument('--svd_rank', type=int, default=3000)
|
468 |
+
return arg_parser.parse_args()
|
469 |
+
|
470 |
+
search_query, docs = setup()
|
471 |
+
|
472 |
+
with gr.Blocks() as demo:
|
473 |
+
gr.Markdown("# Search Engine")
|
474 |
+
with gr.Row():
|
475 |
+
query = gr.Textbox(label="Query", autofocus=True)
|
476 |
+
|
477 |
+
# with gr.Row():
|
478 |
+
# search_results = gr.Textbox(lines=5, label="Results")
|
479 |
+
#
|
480 |
+
|
481 |
+
num_results_step = 5
|
482 |
+
num_results = gr.State(num_results_step)
|
483 |
+
|
484 |
+
@gr.render(inputs=[query, num_results], triggers=[query.submit, num_results.change])
|
485 |
+
def render_results(query, num_res):
|
486 |
+
if query.strip() != '':
|
487 |
+
results = search_query(query)[:num_res]
|
488 |
+
for doc_id, score in results:
|
489 |
+
doc = docs[doc_id - 1]
|
490 |
+
html = f"""
|
491 |
+
<div style="margin: 30px 0">
|
492 |
+
<div style="display: flex; align-items: center; gap: 10px;">
|
493 |
+
<img src="https://www.cs.jhu.edu/favicon.ico" width="25px">
|
494 |
+
<div style="color: #202124; font-size: 14px;">{doc.author if doc.author.strip() else 'No author provided'}</div>
|
495 |
+
</div>
|
496 |
+
<div style="font-size: 20px; color: rgb(26, 13, 171); cursor: pointer; margin: 10px 0" onclick="alert('Just a mockup search engine, lol.')">{doc.title}</div>
|
497 |
+
<div style="color: rgb(71, 71, 71);">{doc.abstract if doc.abstract.strip() else 'No abstract provided'}<br>Relevance score: {score:.3f}</div>
|
498 |
+
</div>
|
499 |
+
"""
|
500 |
+
gr.HTML(html)
|
501 |
+
gr.HTML('<div style="margin: 50px"></div>')
|
502 |
+
# more_btn = gr.HTML('''
|
503 |
+
# <div style="display: flex;justify-content: center; margin: 40px">
|
504 |
+
# <div style="color: rgb(26, 13, 171); font-size: 18px; font-weight: 600; cursor: pointer">More like this</div>
|
505 |
+
# </div>''')
|
506 |
+
more_btn = gr.Button('More like this')
|
507 |
+
more_btn.click(lambda x: x + num_results_step, num_results, num_results)
|
508 |
+
|
509 |
+
query.change(lambda _: num_results_step, num_results, num_results)
|
510 |
+
|
511 |
+
if __name__ == '__main__':
|
512 |
+
demo.launch(
|
513 |
+
# server_name="0.0.0.0",
|
514 |
+
server_port=7861,
|
515 |
+
)
|