Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
import dgl | |
import torch | |
from fainress_component import disparate_impact_remover, reweighting, sample | |
from utils import apply_bin_columns, apply_cat_columns | |
import fastText | |
def nba_RHGN_pre_process(df, dataset_user_id_name, sens_attr, label, onehot_bin_columns, onehot_cat_columns, debaising_approach=None): | |
if onehot_bin_columns != None: | |
df = apply_bin_columns(df, onehot_bin_columns) | |
if onehot_cat_columns != None: | |
df = apply_cat_columns(df, onehot_cat_columns) | |
# nba case | |
if -1 in df[label].unique(): | |
df[label] = df[label].replace(-1, 0) | |
df = df.astype({'user_id': 'str'}, copy=False) | |
df = df.astype({'AGE':'str', 'MP':'str', 'FG':'str'}, copy=False) | |
if debaising_approach != None: | |
if debaising_approach == 'disparate_impact_remover': | |
df = disparate_impact_remover(df, sens_attr, label) | |
elif debaising_approach == 'reweighting': | |
df = reweighting(df, sens_attr, label) | |
elif debaising_approach == 'sample': | |
df = sample(df, sens_attr, label) | |
df = df.drop_duplicates() | |
if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'reweighting': | |
df.AGE = df.AGE.astype(int) | |
df.country = df.country.astype(int) | |
df.SALARY = df.SALARY.astype(int) | |
df['user_id'] = pd.to_numeric(df['user_id']) | |
df = df.astype({'user_id': int}) | |
df.AGE = df.AGE.astype(str) | |
df.MP = df.MP.astype(str) | |
df.FG = df.FG.astype(str) | |
user_dic = {k: v for v, k in enumerate(df.user_id.drop_duplicates())} | |
age_dic = {k: v for v, k in enumerate(df.AGE.drop_duplicates())} | |
mp_dic = {k: v for v, k in enumerate(df.MP.drop_duplicates())} | |
fg_dic = {k: v for v, k in enumerate(df.FG.drop_duplicates())} | |
item_dic = {} | |
c1, c2, c3=[], [], [] | |
if debaising_approach == 'sample': | |
for i, row in df.iterrows(): | |
#print(i) | |
c1_1 = df.at[i, 'AGE'] | |
#print(c1_1) | |
if isinstance(c1_1, str): | |
c1.append(age_dic[c1_1]) | |
else: | |
c1.append(age_dic[c1_1.iloc[0]]) | |
c2_2 = df.at[i, 'MP'] | |
if isinstance(c2_2, str): | |
c2.append(mp_dic[c2_2]) | |
else: | |
c2.append(mp_dic[c2_2.iloc[0]]) | |
c3_3 = df.at[i, 'FG'] | |
if isinstance(c3_3, str): | |
c3.append(fg_dic[c3_3]) | |
else: | |
c3.append(fg_dic[c3_3.iloc[0]]) | |
elif debaising_approach == 'disparate_impact_remover' or debaising_approach == 'reweighting': | |
for i in range(len(df)): | |
c1.append(age_dic[df['AGE'].iloc[i]]) | |
c2.append(mp_dic[df['MP'].iloc[i]]) | |
c3.append(fg_dic[df['FG'].iloc[i]]) | |
else: | |
for i in range(len(df)): | |
c1.append(age_dic[df.at[i, 'AGE']]) | |
c2.append(mp_dic[df.at[i, 'MP']]) | |
c3.append(fg_dic[df.at[i, 'FG']]) | |
print(min(c1), min(c2), min(c3)) | |
print(len(age_dic), len(mp_dic), len(fg_dic)) | |
has_user = [user_dic[user] for user in df.user_id] | |
is_made_by_user = [mp_dic[item] for item in df.MP] | |
data_dict = { | |
("user", "has", "item"): (torch.tensor(has_user), torch.tensor(is_made_by_user)), | |
("item", "is_made_by", "user"): (torch.tensor(is_made_by_user), torch.tensor(has_user)) | |
} | |
G = dgl.heterograph(data_dict) | |
model = fasttext.load_model('../cc.zh.200.bin') | |
temp1 = {k: model.get_sentence_vector(v) for v, k in age_dic.items()} | |
cid1_feature = torch.tensor([temp1[k] for _, k in age_dic.items()]) | |
temp2 = {k: model.get_sentence_vector(v) for v, k in mp_dic.items()} | |
cid2_feature = torch.tensor([temp2[k] for _, k in mp_dic.items()]) | |
temp3 = {k: model.get_sentence_vector(v) for v, k in fg_dic.items()} | |
cid3_feature = torch.tensor([temp3[k] for _, k in fg_dic.items()]) | |
uid2id = {num: i for i, num in enumerate(df[dataset_user_id_name])} | |
df_user = col_map(df, dataset_user_id_name, uid2id) | |
user_label = label_map(df_user, df_user.columns[1:]) | |
# todo let the user define what to have in the graph? | |
label_age = user_label.AGE | |
label_height = user_label.player_height | |
label_weight = user_label.player_weight | |
label_country = user_label.country | |
#label_teams = user_label.teams | |
label_salary = user_label.SALARY | |
G.nodes['user'].data['age'] = torch.tensor(label_age[:G.number_of_nodes('user')].values) | |
G.nodes['user'].data['height'] = torch.tensor(label_height[:G.number_of_nodes('user')].values) | |
G.nodes['user'].data['weight'] = torch.tensor(label_weight[:G.number_of_nodes('user')].values) | |
G.nodes['user'].data['country'] = torch.tensor(label_country[:G.number_of_nodes('user')].values) | |
#G.nodes['user'].data['teams'] = torch.tensor(label_teams[:G.number_of_nodes('user')]) | |
G.nodes['user'].data['SALARY'] = torch.tensor(label_salary[:G.number_of_nodes('user')].values) | |
G.nodes['item'].data['cid1'] = torch.tensor(c1[:G.number_of_nodes('item')]) | |
G.nodes['item'].data['cid2'] = torch.tensor(c2[:G.number_of_nodes('item')]) | |
G.nodes['item'].data['cid3'] = torch.tensor(c3[:G.number_of_nodes('item')]) | |
print(G) | |
print(cid1_feature.shape) | |
print(cid2_feature.shape) | |
print(cid3_feature.shape) | |
return G, cid1_feature, cid2_feature, cid3_feature | |
def col_map(df, col, num2id): | |
df[[col]] = df[[col]].applymap(lambda x: num2id[x]) | |
return df | |
def label_map(label_df, label_list): | |
for label in label_list: | |
label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))} | |
label_df = col_map(label_df, label, label2id) | |
return label_df | |