FairUP / src /aif360 /datasets /regression_dataset.py
erasmopurif's picture
First commit
d2a8669
raw
history blame
4.92 kB
from logging import warning
import numpy as np
import pandas as pd
from aif360.datasets import StructuredDataset
from sklearn.preprocessing import MinMaxScaler
class RegressionDataset(StructuredDataset):
"""Base class for regression datasets."""
def __init__(self, df, dep_var_name, protected_attribute_names,
privileged_classes, instance_weights_name='',
categorical_features=[], na_values=[],
custom_preprocessing=None, metadata=None):
"""
Subclasses of RegressionDataset should perform the following before
calling `super().__init__`:
1. Load the dataframe from a raw file.
Then, this class will go through a standard preprocessing routine which:
2. (optional) Performs some dataset-specific preprocessing (e.g.
renaming columns/values, handling missing data).
3. Drops rows with NA values.
4. Creates a one-hot encoding of the categorical variables.
5. Maps protected attributes to binary privileged/unprivileged
values (1/0).
6. Normalizes df values
Args:
df (pandas.DataFrame): DataFrame on which to perform standard
processing.
dep_var_name: Name of the dependent variable column in `df`.
protected_attribute_names (list): List of names corresponding to
protected attribute columns in `df`.
privileged_classes (list(list or function)): Each element is
a list of values which are considered privileged or a boolean
function which return `True` if privileged for the corresponding
column in `protected_attribute_names`. All others are
unprivileged. Values are mapped to 1 (privileged) and 0
(unprivileged) if they are not already numerical.
instance_weights_name (optional): Name of the instance weights
column in `df`.
categorical_features (optional, list): List of column names in the
DataFrame which are to be expanded into one-hot vectors.
na_values (optional): Additional strings to recognize as NA. See
:func:`pandas.read_csv` for details.
custom_preprocessing (function): A function object which
acts on and returns a DataFrame (f: DataFrame -> DataFrame). If
`None`, no extra preprocessing is applied.
metadata (optional): Additional metadata to append.
"""
# 2. Perform dataset-specific preprocessing
if custom_preprocessing:
df = custom_preprocessing(df)
# 3. Remove any rows that have missing data.
dropped = df.dropna()
count = df.shape[0] - dropped.shape[0]
if count > 0:
warning("Missing Data: {} rows removed from {}.".format(count,
type(self).__name__))
df = dropped
# 4. Create a one-hot encoding of the categorical variables.
df = pd.get_dummies(df, columns=categorical_features, prefix_sep='=')
# 5. Map protected attributes to privileged/unprivileged
privileged_protected_attributes = []
unprivileged_protected_attributes = []
for attr, vals in zip(protected_attribute_names, privileged_classes):
privileged_values = [1.]
unprivileged_values = [0.]
if callable(vals):
df[attr] = df[attr].apply(vals)
elif np.issubdtype(df[attr].dtype, np.number):
# this attribute is numeric; no remapping needed
privileged_values = vals
unprivileged_values = list(set(df[attr]).difference(vals))
else:
# find all instances which match any of the attribute values
priv = np.logical_or.reduce(np.equal.outer(vals, df[attr].to_numpy()))
df.loc[priv, attr] = privileged_values[0]
df.loc[~priv, attr] = unprivileged_values[0]
privileged_protected_attributes.append(
np.array(privileged_values, dtype=np.float64))
unprivileged_protected_attributes.append(
np.array(unprivileged_values, dtype=np.float64))
# 6. Normalize df values
df = pd.DataFrame(MinMaxScaler().fit_transform(df.values),
columns=list(df), index=df.index)
super(RegressionDataset, self).__init__(df=df,
label_names=[dep_var_name],
protected_attribute_names=protected_attribute_names,
privileged_protected_attributes=privileged_protected_attributes,
unprivileged_protected_attributes=unprivileged_protected_attributes,
instance_weights_name=instance_weights_name,
scores_names=[],
metadata=metadata)