File size: 12,726 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import pandas as pd
import numpy as np
import torch
import dgl
import fastText
from fainress_component import disparate_impact_remover, reweighting, sample

def tec_RHGN_pre_process(df, df_user, df_click, df_item, sens_attr, label, special_case, debaising_approach=None):
    # load and clean data
    if debaising_approach != None:
        if special_case == True:
            df_user.dropna(inplace=True)
            age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
            df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x])
            df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)

            # binarize age
            df_user = apply_bin_age(df_user)
            #df_extra = df[['cid1_name', 'cid2_name ', 'cid3_name']].copy()
            #df.drop(columns=["cid1_name", "cid2_name ", "cid3_name", "item_name", "seg_name"], inplace=True)
            if debaising_approach == 'disparate_impact_remover':
                df_user = disparate_impact_remover(df_user, sens_attr, label)
            elif debaising_approach == 'reweighting':
                df_user = reweighting(df_user, sens_attr, label)
            elif debaising_approach == 'sample':
                df_user = sample(df_user, sens_attr, label)

        else:
            df.dropna(inplace=True)

            age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
            df[["age_range"]] = df[["age_range"]].applymap(lambda x:age_dic[x])
            df.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)

            df = apply_bin_age(df)
            df_extra = df[['cid1_name', 'cid2_name ', 'cid3_name']].copy()
            df.drop(columns=["cid1_name", "cid2_name ", "cid3_name", "item_name", "seg_name"], inplace=True)

            if debaising_approach == 'disparate_impact_remover':
                df = disparate_impact_remover(df, sens_attr, label)
            elif debaising_approach == 'reweighting':
                df = reweighting(df, sens_attr, label)
            elif debaising_approach == 'sample':
                df = sample(df, sens_attr, label)

            df_user, df_item, df_click = divide_data2(df)

    else:
        if special_case == False:
            print('special case is False')
            df_user, df_item, df_click = divide_data(df)

        # df_user process
        df_user.dropna(inplace=True)
        age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
        df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x])
        df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)

        # binarize age
        df_user = apply_bin_age(df_user)

    # df_item process
    df_item.dropna(inplace=True)
    df_item.rename(columns={"item_id":"pid", "brand_code":"brand"}, inplace=True)
    df_item.reset_index(drop=True, inplace=True)

    df_item = df_item.sample(frac=0.15, random_state=11)
    df_item.reset_index(drop=True, inplace=True)

    # df_click process
    df_click.dropna(inplace=True)
    df_click.rename(columns={"user_id":"uid", "item_id":"pid"}, inplace=True)
    df_click.reset_index(drop=True, inplace=True)

    df_click = df_click.sample(frac=0.15, random_state=11)
    df_click.reset_index(drop=True, inplace=True)
    
    df_click = df_click[df_click["uid"].isin(df_user["uid"])]
    df_click = df_click[df_click["pid"].isin(df_item["pid"])]

    df_click.drop_duplicates(inplace=True)
    df_click.reset_index(drop=True, inplace=True)

    # Before filtering
    users = set(df_click.uid.tolist())
    items = set(df_click.pid.tolist())
    print('User before filtering {} and items before filtering {}'.format(len(users), len(items)))

    df_click, uid_activity, pid_popularity = filter_triplets(df_click, 'uid', 'pid', min_uc=0, min_sc=2)

    sparsity = 1. * df_click.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0])

    print("After filtering, there are %d interaction events from %d users and %d items (sparsity: %.4f%%)" % 
        (df_click.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100))

    # After filtering
    users = set(df_click.uid.tolist())
    items = set(df_click.pid.tolist())
    print('Users after filtering {} and items after filtering {}'.format(len(users), len(items)))

    # Process
    df_user = df_user[df_user['uid'].isin(users)]
    df_item = df_item[df_item['pid'].isin(items)]
    df_user.reset_index(drop=True, inplace=True)
    df_item.reset_index(drop=True, inplace=True)

    df_user = df_user.astype({"uid": "str"}, copy=False)
    df_item = df_item.astype({'pid': 'str', 'cid1': 'str', 'cid2': 'str', 'cid3': 'str', 'brand': 'str'}, copy=False)
    df_click = df_click.astype({'uid': 'str', 'pid': 'str'}, copy=False)

    if debaising_approach != None and special_case == True:
        df_user.uid = df_user.uid.astype(float).astype(int)  # works
        df_user.uid = df_user.uid.astype(str)

    # Build a dictionary and remove duplicate items
    if debaising_approach != None and special_case == False:
        user_dic = {k: v for v,k in enumerate(df_user.uid)}
        cid1_dic = {k: v for v,k in enumerate(df_extra.cid1_name.drop_duplicates())}
        cid2_dic = {k: v for v,k in enumerate(df_extra['cid2_name'].drop_duplicates())}
        cid3_dic = {k: v for v,k in enumerate(df_extra.cid3_name.drop_duplicates())}
        brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())}
    else:
        user_dic = {k: v for v,k in enumerate(df_user.uid)}
        cid1_dic = {k: v for v, k in enumerate(df_item.cid1_name.drop_duplicates())}  
        cid2_dic = {k: v for v, k in enumerate(df_item['cid2_name'].drop_duplicates())}
        cid3_dic = {k: v for v, k in enumerate(df_item.cid3_name.drop_duplicates())}
        brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())}
    item_dic = {}
    c1, c2, c3, brand = [], [], [], []
    for i in range(len(df_item)):
        k = df_item.at[i,'pid']
        v = i
        item_dic[k] = v
        if debaising_approach != None and special_case == False:
            c1.append(cid1_dic[df_extra.at[i,'cid1_name']])
            c2.append(cid2_dic[df_extra.at[i,'cid2_name']])
            c3.append(cid3_dic[df_extra.at[i,'cid3_name']])
            brand.append(brand_dic[df_item.at[i,'brand']])
        else:
            c1.append(cid1_dic[df_item.at[i,'cid1_name']])
            c2.append(cid2_dic[df_item.at[i,'cid2_name']])
            c3.append(cid3_dic[df_item.at[i,'cid3_name']])
            brand.append(brand_dic[df_item.at[i,'brand']])

    if debaising_approach != None:
        df_item.drop(columns=["price"], inplace=True)
    else:
        df_item.drop(columns=["cid1_name", "cid2_name", "cid3_name", "price", "item_name", "seg_name"], inplace=True)

    #df_user['bin_age'] = df_user['bin_age'].replace(1,2)
    #df_user['bin_age'] = df_user['bin_age'].replace(0,1)
    #df_user['bin_age'] = df_user['bin_age'].replace(2,0)

    if debaising_approach != None:
        if 'bin_age' not in df_user:
            df_user = df_user.join(df_user['bin_age']) 

    # Save?

    # Generate Graph
    G, cid1_feature, cid2_feature, cid3_feature, brand_feature = generate_graph(df_user, 
                                                                                df_item, 
                                                                                df_click, 
                                                                                user_dic, 
                                                                                item_dic, 
                                                                                cid1_dic, 
                                                                                cid2_dic, 
                                                                                cid3_dic, 
                                                                                brand_dic, 
                                                                                c1, 
                                                                                c2, 
                                                                                c3, 
                                                                                brand,
                                                                                debaising_approach)
    

    return G, cid1_feature, cid2_feature, cid3_feature, brand_feature # brand_feature not used (same as cid4_feature?)


def divide_data(df):
    df_user = df[['user_id', 'gender', 'age_range']].copy()
    df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'cid1_name', 'cid2_name', 'cid3_name','brand_code', 'price', 'item_name', 'seg_name']].copy()
    df_click = df[['user_id', 'item_id']].copy()

    return df_user, df_item, df_click

def divide_data2(df):
    df_user = df[['uid', 'gender', 'age']].copy()
    df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'brand_code', 'price']].copy()
    df_click = df[['uid', 'item_id']].copy()

    return df_user, df_item, df_click

def apply_bin_age(df_user):
    df_user["bin_age"] = df_user["age"]
    df_user["bin_age"] = df_user["bin_age"].replace(1,0)
    df_user["bin_age"] = df_user["bin_age"].replace(2,1)
    df_user["bin_age"] = df_user["bin_age"].replace(3,1)
    df_user["bin_age"] = df_user["bin_age"].replace(4,1)

    return df_user

def get_count(tp, id):
    playcount_groupbyid = tp[[id]].groupby(id, as_index=True)
    count = playcount_groupbyid.size()
    return count

def filter_triplets(tp, user, item, min_uc=0, min_sc=0):
    # Only keep the triplets for users who clicked on at least min_uc items
    if min_uc > 0:
        usercount = get_count(tp, user)
        tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])]
    
    # Only keep the triplets for items which were clicked on by at least min_sc users. 
    if min_sc > 0:
        itemcount = get_count(tp, item)
        tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])]
    
    # Update both usercount and itemcount after filtering
    usercount, itemcount = get_count(tp, user), get_count(tp, item) 
    return tp, usercount, itemcount


def generate_graph(df_user, df_item, df_click, user_dic, item_dic, cid1_dic, cid2_dic, cid3_dic, brand_dic, c1, c2, c3, brand, debaising_approach):

    u = {v:k for k,v in user_dic.items()}
    i = {v:k for k,v in item_dic.items()}

    click_user = [user_dic[user] for user in df_click.uid]
    click_item = [item_dic[item] for item in df_click.pid]

    data_dict = {
        ('user', 'click', 'item'): (torch.tensor(click_user), torch.tensor(click_item)),
        ('item', 'click-by', 'user'): (torch.tensor(click_item), torch.tensor(click_user))
    }

    
    G = dgl.heterograph(data_dict)

    # todo import the fasttext correctly
    model = fasttext.load_model('../cc.zh.200.bin')

    temp = {k: model.get_sentence_vector(v) for v, k in cid1_dic.items()}
    cid1_feature = torch.tensor([temp[k] for _, k in cid1_dic.items()])

    temp = {k: model.get_sentence_vector(v) for v, k in cid2_dic.items()}
    cid2_feature = torch.tensor([temp[k] for _, k in cid2_dic.items()])

    temp = {k: model.get_sentence_vector(v) for v, k in cid3_dic.items()}
    cid3_feature = torch.tensor([temp[k] for _, k in cid3_dic.items()])

    temp = {k: model.get_sentence_vector(v) for v, k in brand_dic.items()}
    brand_feature = torch.tensor([temp[k] for _, k in brand_dic.items()])

    # Passing labels into label
    if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'reweighting':
        df_user['gender'] = df_user['gender'].astype(np.int64)
    label_gender = df_user.gender
    label_age = df_user.age
    label_bin_age = df_user.bin_age

    G.nodes['user'].data['gender'] = torch.tensor(label_gender[:G.number_of_nodes('user')])
    G.nodes['user'].data['age'] = torch.tensor(label_age[:G.number_of_nodes('user')])
    G.nodes['user'].data['bin_age'] = torch.tensor(label_bin_age[:G.number_of_nodes('user')])
    G.nodes['item'].data['cid1'] = torch.tensor(c1[:G.number_of_nodes('item')])
    G.nodes['item'].data['cid2'] = torch.tensor(c2[:G.number_of_nodes('item')])
    G.nodes['item'].data['cid3'] = torch.tensor(c3[:G.number_of_nodes('item')])
    G.nodes['item'].data['brand'] = torch.tensor(brand[:G.number_of_nodes('item')])

    return G, cid1_feature, cid2_feature, cid3_feature, brand_feature