File size: 12,262 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from asyncore import readwrite
import pandas as pd
import numpy as np
import scipy.sparse as sp
import os
from fainress_component import disparate_impact_remover, reweighting, sample
import time

def tec_CatGCN_pre_process(df, df_user, df_click, df_item, sens_attr, label, special_case, debaising_approach=None):
    if debaising_approach != None:
        if special_case == True:
            df_user.dropna(inplace=True)
            age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
            df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x])
            df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)
            # binarize age
            df_user = apply_bin_age(df_user)
            if debaising_approach == 'disparate_impact_remover':
                df_user = disparate_impact_remover(df_user, sens_attr, label)
            elif debaising_approach == 'reweighting':
                df_user = reweighting(df_user, sens_attr, label)
            elif debaising_approach == 'sample':
                df_user = sample(df_user, sens_attr, label)
        else:
            # binarize age
            df_user = apply_bin_age(df_user)
            df.dropna(inplace=True)
            age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
            df[["age_range"]] = df[["age_range"]].applymap(lambda x:age_dic[x])
            df.rename(columns={"user_id":"uid","age_range":"age"}, inplace=True)

            df = apply_bin_age(df)

            df.drop(columns=["cid1", "cid2", "cid1_name", "cid2_name ", "cid3_name", "brand_code", "price", "item_name", "seg_name"], inplace=True)

            if debaising_approach == 'disparate_impact_remover':
                df = disparate_impact_remover(df, sens_attr, label)
            elif debaising_approach == 'reweighting':
                df = reweighting(df, sens_attr, label)
            elif debaising_approach == 'sample':
                df = sample(df, sens_attr, label)
            
            df_user, df_item, df_click = divide_data2(df)

    else:
        if special_case == False:
            print('special case is false')
            df_user, df_item, df_click = divide_data(df)
        df_user.dropna(inplace=True)
        age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4}
        df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x])
        df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True)

        # binarize age
        df_user = apply_bin_age(df_user)

    # item
    df_item.dropna(inplace=True)
    df_item.rename(columns={"item_id":"pid", "cid3":"cid"}, inplace=True)
    if debaising_approach == None:
        df_item.drop(columns=["cid1", "cid2", "cid1_name", "cid2_name", "cid3_name", "brand_code", "price", "item_name", "seg_name"], inplace=True)
    df_item.reset_index(drop=True, inplace=True)

    df_item = df_item.sample(frac=0.15, random_state=11)
    df_item.reset_index(drop=True, inplace=True)

    # click
    df_click.dropna(inplace=True)

    if debaising_approach == None and special_case == True:
        df_click.rename(columns={"user_id":"uid", "item_id":"pid"}, inplace=True)
    elif debaising_approach != None and special_case == False:
        df_click.rename(columns={"item_id":"pid"}, inplace=True)
    elif debaising_approach != None and special_case == True:
        df_click.rename(columns={"user_id":"uid", "item_id":"pid"}, inplace=True)

    df_click.reset_index(drop=True, inplace=True)

    df_click = df_click.sample(frac=0.15, random_state=11)
    df_click.reset_index(drop=True, inplace=True)

    df_click = df_click[df_click["uid"].isin(df_user["uid"])]
    df_click = df_click[df_click["pid"].isin(df_item["pid"])]

    df_click.drop_duplicates(inplace=True)
    df_click.reset_index(drop=True, inplace=True)

    # filter df_click (item interactions >= 2)
    # Before filtering
    users = set(df_click.uid.tolist())
    items = set(df_click.pid.tolist())

    print('User before filtering {} and items before filtering {}'.format(len(users), len(items)))

    df_click, uid_activity, pid_popularity = filter_triplets(df_click, 'uid', 'pid', min_uc=0, min_sc=2)

    sparsity = 1. * df_click.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0])

    print("After filtering, there are %d interaction events from %d users and %d items (sparsity: %.4f%%)" % 
        (df_click.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100))

    # After filtering
    users = set(df_click.uid.tolist())
    items = set(df_click.pid.tolist())

    print('Users after filtering {} and items after filtering {}'.format(len(users), len(items)))

    # Click-item merge
    df_click_item = pd.merge(df_click, df_item, how="inner", on="pid")
    raw_click_item = df_click_item.drop("pid", axis=1, inplace=False)
    raw_click_item.drop_duplicates(inplace=True)

    # filter df_click_item (cid interactions >= 2)
    df_click_item, uid_activity, cid_popularity = filter_triplets(raw_click_item, 'uid', 'cid', min_uc=0, min_sc=2)

    sparsity = 1. * df_click_item.shape[0] / (uid_activity.shape[0] * cid_popularity.shape[0])

    print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % 
        (df_click_item.shape[0], uid_activity.shape[0], cid_popularity.shape[0], sparsity * 100))

   # uid-uid analysis
    df_click = df_click[df_click["uid"].isin(df_click_item["uid"])]
    df_click_1 = df_click[["uid", "pid"]].copy()
    df_click_1.rename(columns={"uid":"uid1"}, inplace=True)

    df_click_2 = df_click[["uid", "pid"]].copy()
    df_click_2.rename(columns={"uid":"uid2"}, inplace=True)

    df_click1_click2 = pd.merge(df_click_1, df_click_2, how="inner", on="pid")
    #create df_uid_uid
    df_uid_uid = df_click1_click2.drop("pid", axis=1, inplace=False)
    df_uid_uid.drop_duplicates(inplace=True)

    # delete unneeded dataframes
    del df_click_1, df_click_2, df_click1_click2

    # Map
    # Map
    df_label = df_user[df_user["uid"].isin(df_click_item["uid"])]

    if debaising_approach == None and special_case == True:
        uid2id = {num: i for i, num in enumerate(df_label['uid'])}
    elif debaising_approach == 'sample' or debaising_approach == 'reweighting' and special_case == True:
         uid2id = {num: i for i, num in enumerate(df_label['uid'])}
    else:
        uid2id = {num: i for i, num in enumerate(df_click_item['uid'])}
    cid2id = {num: i for i, num in enumerate(pd.unique(df_click_item['cid']))}

    df_label = col_map(df_label, 'uid', uid2id)
    df_label = label_map(df_label, df_label.columns[1:])

    user_edge = df_uid_uid[df_uid_uid['uid1'].isin(df_click_item['uid'])]
    user_edge = user_edge[user_edge['uid2'].isin(df_click_item['uid'])]

    user_edge = col_map(user_edge, 'uid1', uid2id)
    user_edge = col_map(user_edge, 'uid2', uid2id)

    user_field = col_map(df_click_item, 'uid', uid2id)
    user_field = col_map(user_field, 'cid', cid2id)

    if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'sample' or debaising_approach == 'reweighting':
        user_field = user_field.reset_index()
        user_field = user_field.drop(['uid'], axis=1)

        user_field = user_field.rename(columns={"index": "uid"})
        user_field['uid'] = user_field['uid'].astype(str).astype(int)


    # new
    if debaising_approach != None:
        if 'bin_age' not in df_user:
            df_label = df_label.join(df_user['bin_age']) 

    # Save?
    save_path = './'
    user_edge.to_csv(os.path.join(save_path, "user_edge.csv"), index=False)
    user_field.to_csv(os.path.join(save_path, "user_field.csv"), index=False)
    df_label.to_csv(os.path.join(save_path, "user_labels.csv"), index=False)

    df_label[["uid", "age"]].to_csv(os.path.join(save_path, "user_age.csv"), index=False)
    df_label[["uid", "bin_age"]].to_csv(os.path.join(save_path, "user_bin_age.csv"), index=False)
    df_label[["uid", "gender"]].to_csv(os.path.join(save_path, "user_gender.csv"), index=False)
    user_gender = df_label[["uid", "gender"]]

    NUM_FIELD = 10

    np.random.seed(42)

    user_field = field_reader(os.path.join(save_path, "user_field.csv"))

    neighs = get_neighs(user_field)


    if debaising_approach == 'disparate_impact_remover':
        neighs = [x for x in neighs if x.size != 0]

    sample_neighs = []
    for i in range(len(neighs)):
        sample_neighs.append(list(sample_neigh(neighs[i], NUM_FIELD)))
        
    sample_neighs = np.array(sample_neighs)

    np.save(os.path.join(save_path, 'user_field.npy'), sample_neighs)

    user_field_new = sample_neighs

    user_edge_path = './user_edge.csv'
    user_field_new_path = './user_field.npy'
    user_gender_path = './user_gender.csv'
    user_label_path = './user_labels.csv'

    return user_edge_path, user_field_new_path, user_gender_path, user_label_path


def divide_data(df):
    df_user = df[['user_id', 'gender', 'age_range']].copy()
    df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'cid1_name', 'cid2_name ', 'cid3_name', 'brand_code', 'price', 'item_name', 'seg_name']].copy()
    df_click = df[['user_id', 'item_id']].copy()

    return df_user, df_item, df_click


def divide_data2(df):
    df_user = df[['uid', 'gender', 'age']].copy()
    df_item = df[['item_id', 'cid3']].copy()
    df_click = df[['uid', 'item_id']].copy()

    return df_user, df_item, df_click

def apply_bin_age(df_user):
    df_user["bin_age"] = df_user["age"]
    df_user["bin_age"] = df_user["bin_age"].replace(1,0)
    df_user["bin_age"] = df_user["bin_age"].replace(2,1)
    df_user["bin_age"] = df_user["bin_age"].replace(3,1)
    df_user["bin_age"] = df_user["bin_age"].replace(4,1)

    return df_user

def get_count(tp, id):
    playcount_groupbyid = tp[[id]].groupby(id, as_index=True)
    count = playcount_groupbyid.size()
    return count

def filter_triplets(tp, user, item, min_uc=0, min_sc=0):
    # Only keep the triplets for users who clicked on at least min_uc items
    if min_uc > 0:
        usercount = get_count(tp, user)
        tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])]
    
    # Only keep the triplets for items which were clicked on by at least min_sc users. 
    if min_sc > 0:
        itemcount = get_count(tp, item)
        tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])]
    
    # Update both usercount and itemcount after filtering
    usercount, itemcount = get_count(tp, user), get_count(tp, item) 
    return tp, usercount, itemcount

def col_map(df, col, num2id):
    df[[col]] = df[[col]].applymap(lambda x: num2id[x])
    return df


def label_map(label_df, label_list):
    for label in label_list:
        label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))}
        label_df = col_map(label_df, label, label2id)
    return label_df

def field_reader(path):
    """
    Reading the sparse field matrix stored as csv from the disk.
    :param path: Path to the csv file.
    :return field: csr matrix of field.
    """
    user_field = pd.read_csv(path)
    user_index = user_field["uid"].values.tolist()
    field_index = user_field["cid"].values.tolist()
    user_count = max(user_index)+1
    field_count = max(field_index)+1
    field_index = sp.csr_matrix((np.ones_like(user_index), (user_index, field_index)), shape=(user_count, field_count))
    return field_index

def get_neighs(csr):
    neighs = []
#     t = time.time()
    idx = np.arange(csr.shape[1])
    for i in range(csr.shape[0]):
        x = csr[i, :].toarray()[0] > 0
        neighs.append(idx[x])
#         if i % (10*1000) == 0:
#             print('sec/10k:', time.time()-t)
    return neighs

def sample_neigh(neigh, num_sample):
    if len(neigh) >= num_sample:
        sample_neigh = np.random.choice(neigh, num_sample, replace=False)
    elif len(neigh) < num_sample:
        sample_neigh = np.random.choice(neigh, num_sample, replace=True)
    return sample_neigh