File size: 10,799 Bytes
138df1c
 
 
 
 
 
 
 
98ba949
138df1c
 
 
db29767
 
138df1c
 
 
 
98ba949
 
 
 
 
 
 
 
138df1c
 
 
 
98ba949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138df1c
 
 
 
98ba949
 
138df1c
98ba949
 
 
138df1c
98ba949
 
138df1c
98ba949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138df1c
98ba949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b651759
98ba949
 
 
 
 
 
 
 
 
 
 
138df1c
b651759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138df1c
 
 
 
 
 
 
 
 
98ba949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138df1c
 
 
 
b651759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138df1c
 
b651759
98ba949
138df1c
 
 
b651759
 
138df1c
 
 
 
 
 
 
b651759
138df1c
 
b651759
98ba949
138df1c
 
 
b651759
 
138df1c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# app.py
import gradio as gr
import torch
from transformers import AutoModel, AutoProcessor, AutoTokenizer
from PIL import Image
import cv2
import tempfile
import os
import subprocess

# Load your custom VLM model from Hugging Face
MODEL_ID = "enpeizhao/qwen2_5-3b-instruct-trl-sft-vlm-odd-12-nf4-merged"  
BASE_MODEL_ID = "Qwen/Qwen2.5-3B-Instruct"  

device = "cuda" if torch.cuda.is_available() else "cpu"

def load_model():
    """Load the model and processor from Hugging Face"""
    try:
        model = AutoModel.from_pretrained(MODEL_ID, trust_remote_code=True).to(device)
        processor = AutoProcessor.from_pretrained(BASE_MODEL_ID, trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, trust_remote_code=True)
        return model, processor, tokenizer
    except Exception as e:
        print(f"Error loading model: {e}")
        return None, None, None

# Load model at startup
model, processor, tokenizer = load_model()

def convert_video_format(input_path, output_path):
    """Convert video to MP4 format using ffmpeg"""
    try:
        cmd = [
            "ffmpeg",
            "-i", input_path,
            "-c:v", "libx264",
            "-c:a", "aac",
            "-strict", "experimental",
            "-preset", "fast",
            "-y",  # Overwrite output file
            output_path
        ]
        result = subprocess.run(cmd, capture_output=True, text=True)
        if result.returncode != 0:
            print(f"FFmpeg error: {result.stderr}")
            return False
        return True
    except Exception as e:
        print(f"Error converting video: {e}")
        return False

def extract_frames(video_path, max_frames=10):
    """Extract frames from video"""
    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            return []
        
        frames = []
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = cap.get(cv2.CAP_PROP_FPS)
        
        # Calculate frame indices to sample
        if total_frames <= max_frames:
            frame_indices = range(total_frames)
        else:
            frame_indices = [int(i * total_frames / max_frames) for i in range(max_frames)]
        
        for i in frame_indices:
            cap.set(cv2.CAP_PROP_POS_FRAMES, i)
            ret, frame = cap.read()
            if ret:
                # Convert BGR to RGB
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                frames.append(Image.fromarray(frame_rgb))
        
        cap.release()
        return frames
    except Exception as e:
        print(f"Error extracting frames: {e}")
        return []

def process_video_frames(video_path, prompt):
    """
    Process video frames with your VLM model
    """
    if model is None or processor is None or tokenizer is None:
        return "Model not loaded properly"
    
    try:
        # Extract frames from video
        frames = extract_frames(video_path, max_frames=8)
        
        if not frames:
            return "No frames extracted from video"
        
        # Prepare conversation messages
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "video", "video": frames},
                    {"type": "text", "text": prompt},
                ],
            }
        ]
        
        # Process inputs (this is model-specific)
        try:
            # Try Qwen-VL style processing first
            text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            inputs = processor(text=text, videos=frames, return_tensors="pt")
            inputs = inputs.to(device)
            
            # Generate response
            with torch.no_grad():
                generated_ids = model.generate(**inputs, max_new_tokens=512)
            
            # Decode output
            generated_ids = [
                output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
            ]
            response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
            return response
        except Exception as e:
            # Fallback to simpler processing
            print(f"Qwen-VL style processing failed: {e}")
            # Process first frame with text prompt
            first_frame = frames[0]
            inputs = processor(text=prompt, videos=[first_frame], return_tensors="pt").to(device)
            
            # Generate response
            with torch.no_grad():
                outputs = model.generate(**inputs, max_new_tokens=100)
                
            # Decode output
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            return f"[Processed first frame only] {response}"
            
    except Exception as e:
        return f"Error processing video: {str(e)}"

def process_media(media, prompt):
    """
    通用处理函数,支持图片(PIL.Image)或视频(文件路径)
    """
    if model is None or processor is None or tokenizer is None:
        return "Model not loaded properly"

    # 判断输入类型
    if isinstance(media, Image.Image):
        # 单张图片
        frames = [media]
    elif isinstance(media, str) and os.path.exists(media):
        # 视频路径,提取帧
        frames = extract_frames(media, max_frames=8)
        if not frames:
            return "No frames extracted from video"
    else:
        return "Unsupported media type"

    # 构造消息
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "video", "video": frames},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    try:
        # Qwen-VL风格处理
        text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=text, videos=frames, return_tensors="pt")
        inputs = inputs.to(device)
        with torch.no_grad():
            generated_ids = model.generate(**inputs, max_new_tokens=512)
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return response
    except Exception as e:
        print(f"Qwen-VL style processing failed: {e}")
        first_frame = frames[0]
        try:
            inputs = processor(text=prompt, videos=[first_frame], return_tensors="pt").to(device)
            with torch.no_grad():
                outputs = model.generate(**inputs, max_new_tokens=100)
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            return f"[Processed first frame only] {response}"
        except Exception as e2:
            return f"Error processing media: {str(e2)}"

def video_qa(video, prompt):
    """Main function for Gradio interface"""
    if video is None:
        return "Please upload a video"
    
    if not prompt:
        return "Please enter a question"
    
    try:
        # Create temporary files
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_input:
            input_path = tmp_input.name
            
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output:
            output_path = tmp_output.name
            
        try:
            # Save uploaded video
            with open(input_path, "wb") as f:
                with open(video, "rb") as uploaded_file:
                    f.write(uploaded_file.read())
            
            # Convert video to compatible format
            if not convert_video_format(input_path, output_path):
                # If conversion fails, try to use original
                output_path = input_path
            
            # Process video with model
            result = process_video_frames(output_path, prompt)
            return result
            
        finally:
            # Clean up temporary files
            for path in [input_path, output_path]:
                if os.path.exists(path):
                    os.unlink(path)
        
    except Exception as e:
        return f"Error processing video: {str(e)}"

def media_qa(media, prompt):
    """Gradio接口主函数,支持图片或视频"""
    if media is None:
        return "Please upload an image or video"
    if not prompt:
        return "Please enter a question"

    # 判断是否为视频文件路径
    if isinstance(media, str) and os.path.exists(media):
        # 视频处理流程(与原video_qa一致)
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_input:
                input_path = tmp_input.name
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output:
                output_path = tmp_output.name
            try:
                with open(input_path, "wb") as f:
                    with open(media, "rb") as uploaded_file:
                        f.write(uploaded_file.read())
                if not convert_video_format(input_path, output_path):
                    output_path = input_path
                result = process_media(output_path, prompt)
                return result
            finally:
                for path in [input_path, output_path]:
                    if os.path.exists(path):
                        os.unlink(path)
        except Exception as e:
            return f"Error processing video: {str(e)}"
    else:
        # 图片直接处理
        try:
            return process_media(media, prompt)
        except Exception as e:
            return f"Error processing image: {str(e)}"

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image/Video Question Answering with Custom VLM")
    gr.Markdown(f"Model: {MODEL_ID}")
    
    with gr.Row():
        with gr.Column():
            media_input = gr.File(label="Upload Image or Video", file_types=["image", "video"], interactive=True)
            text_input = gr.Textbox(label="Question", placeholder="What is happening in this image or video?")
            submit_btn = gr.Button("Process")
        
        with gr.Column():
            output_text = gr.Textbox(label="Answer", lines=10)
    
    gr.Examples(
        examples=[
            [None, "Describe what you see in the image or video"],
            [None, "What objects are present in the scene?"]
        ],
        inputs=[media_input, text_input],
        outputs=output_text
    )
    
    submit_btn.click(
        fn=media_qa,
        inputs=[media_input, text_input],
        outputs=output_text
    )

if __name__ == "__main__":
    demo.launch()