Spaces:
Sleeping
Sleeping
fix video inference and add images
Browse files- app.py +98 -9
- packages.txt +1 -0
app.py
CHANGED
@@ -128,7 +128,7 @@ def process_video_frames(video_path, prompt):
|
|
128 |
print(f"Qwen-VL style processing failed: {e}")
|
129 |
# Process first frame with text prompt
|
130 |
first_frame = frames[0]
|
131 |
-
inputs = processor(
|
132 |
|
133 |
# Generate response
|
134 |
with torch.no_grad():
|
@@ -141,6 +141,60 @@ def process_video_frames(video_path, prompt):
|
|
141 |
except Exception as e:
|
142 |
return f"Error processing video: {str(e)}"
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def video_qa(video, prompt):
|
145 |
"""Main function for Gradio interface"""
|
146 |
if video is None:
|
@@ -181,33 +235,68 @@ def video_qa(video, prompt):
|
|
181 |
except Exception as e:
|
182 |
return f"Error processing video: {str(e)}"
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
# Create Gradio interface
|
185 |
with gr.Blocks() as demo:
|
186 |
-
gr.Markdown("# Video Question Answering with Custom VLM")
|
187 |
gr.Markdown(f"Model: {MODEL_ID}")
|
188 |
|
189 |
with gr.Row():
|
190 |
with gr.Column():
|
191 |
-
|
192 |
-
text_input = gr.Textbox(label="Question", placeholder="What is happening in this video?")
|
193 |
submit_btn = gr.Button("Process")
|
194 |
|
195 |
with gr.Column():
|
196 |
output_text = gr.Textbox(label="Answer", lines=10)
|
197 |
|
198 |
-
# Examples
|
199 |
gr.Examples(
|
200 |
examples=[
|
201 |
-
[None, "Describe what you see in the video"],
|
202 |
[None, "What objects are present in the scene?"]
|
203 |
],
|
204 |
-
inputs=[
|
205 |
outputs=output_text
|
206 |
)
|
207 |
|
208 |
submit_btn.click(
|
209 |
-
fn=
|
210 |
-
inputs=[
|
211 |
outputs=output_text
|
212 |
)
|
213 |
|
|
|
128 |
print(f"Qwen-VL style processing failed: {e}")
|
129 |
# Process first frame with text prompt
|
130 |
first_frame = frames[0]
|
131 |
+
inputs = processor(text=prompt, videos=[first_frame], return_tensors="pt").to(device)
|
132 |
|
133 |
# Generate response
|
134 |
with torch.no_grad():
|
|
|
141 |
except Exception as e:
|
142 |
return f"Error processing video: {str(e)}"
|
143 |
|
144 |
+
def process_media(media, prompt):
|
145 |
+
"""
|
146 |
+
通用处理函数,支持图片(PIL.Image)或视频(文件路径)
|
147 |
+
"""
|
148 |
+
if model is None or processor is None or tokenizer is None:
|
149 |
+
return "Model not loaded properly"
|
150 |
+
|
151 |
+
# 判断输入类型
|
152 |
+
if isinstance(media, Image.Image):
|
153 |
+
# 单张图片
|
154 |
+
frames = [media]
|
155 |
+
elif isinstance(media, str) and os.path.exists(media):
|
156 |
+
# 视频路径,提取帧
|
157 |
+
frames = extract_frames(media, max_frames=8)
|
158 |
+
if not frames:
|
159 |
+
return "No frames extracted from video"
|
160 |
+
else:
|
161 |
+
return "Unsupported media type"
|
162 |
+
|
163 |
+
# 构造消息
|
164 |
+
messages = [
|
165 |
+
{
|
166 |
+
"role": "user",
|
167 |
+
"content": [
|
168 |
+
{"type": "video", "video": frames},
|
169 |
+
{"type": "text", "text": prompt},
|
170 |
+
],
|
171 |
+
}
|
172 |
+
]
|
173 |
+
|
174 |
+
try:
|
175 |
+
# Qwen-VL风格处理
|
176 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
177 |
+
inputs = processor(text=text, videos=frames, return_tensors="pt")
|
178 |
+
inputs = inputs.to(device)
|
179 |
+
with torch.no_grad():
|
180 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
181 |
+
generated_ids = [
|
182 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
183 |
+
]
|
184 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
185 |
+
return response
|
186 |
+
except Exception as e:
|
187 |
+
print(f"Qwen-VL style processing failed: {e}")
|
188 |
+
first_frame = frames[0]
|
189 |
+
try:
|
190 |
+
inputs = processor(text=prompt, videos=[first_frame], return_tensors="pt").to(device)
|
191 |
+
with torch.no_grad():
|
192 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
193 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
194 |
+
return f"[Processed first frame only] {response}"
|
195 |
+
except Exception as e2:
|
196 |
+
return f"Error processing media: {str(e2)}"
|
197 |
+
|
198 |
def video_qa(video, prompt):
|
199 |
"""Main function for Gradio interface"""
|
200 |
if video is None:
|
|
|
235 |
except Exception as e:
|
236 |
return f"Error processing video: {str(e)}"
|
237 |
|
238 |
+
def media_qa(media, prompt):
|
239 |
+
"""Gradio接口主函数,支持图片或视频"""
|
240 |
+
if media is None:
|
241 |
+
return "Please upload an image or video"
|
242 |
+
if not prompt:
|
243 |
+
return "Please enter a question"
|
244 |
+
|
245 |
+
# 判断是否为视频文件路径
|
246 |
+
if isinstance(media, str) and os.path.exists(media):
|
247 |
+
# 视频处理流程(与原video_qa一致)
|
248 |
+
try:
|
249 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_input:
|
250 |
+
input_path = tmp_input.name
|
251 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output:
|
252 |
+
output_path = tmp_output.name
|
253 |
+
try:
|
254 |
+
with open(input_path, "wb") as f:
|
255 |
+
with open(media, "rb") as uploaded_file:
|
256 |
+
f.write(uploaded_file.read())
|
257 |
+
if not convert_video_format(input_path, output_path):
|
258 |
+
output_path = input_path
|
259 |
+
result = process_media(output_path, prompt)
|
260 |
+
return result
|
261 |
+
finally:
|
262 |
+
for path in [input_path, output_path]:
|
263 |
+
if os.path.exists(path):
|
264 |
+
os.unlink(path)
|
265 |
+
except Exception as e:
|
266 |
+
return f"Error processing video: {str(e)}"
|
267 |
+
else:
|
268 |
+
# 图片直接处理
|
269 |
+
try:
|
270 |
+
return process_media(media, prompt)
|
271 |
+
except Exception as e:
|
272 |
+
return f"Error processing image: {str(e)}"
|
273 |
+
|
274 |
# Create Gradio interface
|
275 |
with gr.Blocks() as demo:
|
276 |
+
gr.Markdown("# Image/Video Question Answering with Custom VLM")
|
277 |
gr.Markdown(f"Model: {MODEL_ID}")
|
278 |
|
279 |
with gr.Row():
|
280 |
with gr.Column():
|
281 |
+
media_input = gr.File(label="Upload Image or Video", file_types=["image", "video"], interactive=True)
|
282 |
+
text_input = gr.Textbox(label="Question", placeholder="What is happening in this image or video?")
|
283 |
submit_btn = gr.Button("Process")
|
284 |
|
285 |
with gr.Column():
|
286 |
output_text = gr.Textbox(label="Answer", lines=10)
|
287 |
|
|
|
288 |
gr.Examples(
|
289 |
examples=[
|
290 |
+
[None, "Describe what you see in the image or video"],
|
291 |
[None, "What objects are present in the scene?"]
|
292 |
],
|
293 |
+
inputs=[media_input, text_input],
|
294 |
outputs=output_text
|
295 |
)
|
296 |
|
297 |
submit_btn.click(
|
298 |
+
fn=media_qa,
|
299 |
+
inputs=[media_input, text_input],
|
300 |
outputs=output_text
|
301 |
)
|
302 |
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|