Spaces:
Runtime error
Runtime error
File size: 4,236 Bytes
0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 001485a 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 48fb909 6cbadc6 0ffe0e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import streamlit as st
from PyPDF2 import PdfReader
from transformers import pipeline, AutoTokenizer, AutoModel
from sklearn.feature_extraction.text import TfidfVectorizer
import faiss
import numpy as np
# Load the Hugging Face model for text generation
@st.cache_resource
def load_text_generator():
return pipeline("text2text-generation", model="google/flan-t5-base")
# Load the Hugging Face model for embeddings
@st.cache_resource
def load_embedding_model():
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
return tokenizer, model
text_generator = load_text_generator()
embedding_tokenizer, embedding_model = load_embedding_model()
# Function to extract text from PDF
def extract_pdf_content(pdf_file):
reader = PdfReader(pdf_file)
content = ""
for page in reader.pages:
content += page.extract_text()
return content
# Function to split content into chunks
def chunk_text(text, chunk_size=500):
words = text.split()
return [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
# Function to compute embeddings
def compute_embeddings(text_chunks):
embeddings = []
for chunk in text_chunks:
inputs = embedding_tokenizer(chunk, return_tensors="pt", truncation=True, padding=True)
outputs = embedding_model(**inputs)
embeddings.append(outputs.pooler_output.detach().numpy()[0])
return np.array(embeddings)
# Function to build FAISS index
def build_faiss_index(embeddings):
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension) # L2 distance for similarity
index.add(embeddings)
return index
# Function to search in FAISS index
def search_faiss_index(index, query_embedding, text_chunks, top_k=3):
distances, indices = index.search(query_embedding, top_k)
return [(text_chunks[idx], distances[0][i]) for i, idx in enumerate(indices[0])]
# Function to generate structured content
def generate_professional_content(topic):
prompt = f"Explain '{topic}' in bullet points, highlighting key concepts, examples, and applications."
response = text_generator(prompt, max_length=300, num_return_sequences=1)
return response[0]['generated_text']
# Function to compute query embedding
def compute_query_embedding(query):
inputs = embedding_tokenizer(query, return_tensors="pt", truncation=True, padding=True)
outputs = embedding_model(**inputs)
return outputs.pooler_output.detach().numpy()
# Streamlit app
st.title("Generative AI for Electrical Engineering Education with FAISS")
st.sidebar.header("AI-Based Tutor with Vector Search")
# File upload section
uploaded_file = st.sidebar.file_uploader("Upload Study Material (PDF)", type=["pdf"])
topic = st.sidebar.text_input("Enter a topic (e.g., Newton's Third Law)")
if uploaded_file:
# Extract and process file content
content = extract_pdf_content(uploaded_file)
st.sidebar.success(f"{uploaded_file.name} uploaded successfully!")
# Chunk and compute embeddings
chunks = chunk_text(content)
embeddings = compute_embeddings(chunks)
# Build FAISS index
index = build_faiss_index(embeddings)
st.write("**File Processed and Indexed for Search**")
st.write(f"Total chunks created: {len(chunks)}")
# Generate study material
if st.button("Generate Study Material"):
if topic:
st.header(f"Study Material: {topic}")
# Compute query embedding
query_embedding = compute_query_embedding(topic)
# Search FAISS index
if uploaded_file:
results = search_faiss_index(index, query_embedding, chunks, top_k=3)
st.write("**Relevant Content from Uploaded File:**")
for result, distance in results:
st.write(f"- {result} (Similarity: {distance:.2f})")
else:
st.warning("No file uploaded. Generating AI-based content instead.")
# Generate AI content
ai_content = generate_professional_content(topic)
st.write("**AI-Generated Content:**")
st.write(ai_content)
else:
st.warning("Please enter a topic!")
|