Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
from PyPDF2 import PdfReader
|
3 |
import pandas as pd
|
4 |
from transformers import pipeline
|
|
|
5 |
|
6 |
# Load the Hugging Face model for text generation (Bloom or any other open-source model)
|
7 |
@st.cache_resource
|
@@ -29,12 +30,13 @@ def read_csv_file(file):
|
|
29 |
|
30 |
# Function to search for a topic in the extracted content
|
31 |
def search_topic_in_content(content, topic):
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
# Function to generate
|
36 |
-
def
|
37 |
-
prompt = f"Explain
|
38 |
response = text_generator(prompt, max_length=300, num_return_sequences=1)
|
39 |
return response[0]['generated_text']
|
40 |
|
@@ -55,7 +57,7 @@ st.sidebar.header("AI-Based Tutor")
|
|
55 |
|
56 |
# File upload section
|
57 |
uploaded_file = st.sidebar.file_uploader("Upload Study Material (PDF/TXT/CSV)", type=["pdf", "txt", "csv"])
|
58 |
-
topic = st.sidebar.text_input("Enter a topic (e.g., DC Motors
|
59 |
|
60 |
# Process uploaded file
|
61 |
content = ""
|
@@ -77,14 +79,16 @@ if uploaded_file:
|
|
77 |
if st.button("Generate Study Material"):
|
78 |
if topic:
|
79 |
st.header(f"Study Material: {topic}")
|
|
|
80 |
filtered_content = search_topic_in_content(content, topic) if content else ""
|
81 |
if filtered_content:
|
82 |
-
st.write("**Relevant Extracted Content:**")
|
83 |
st.write(filtered_content)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
else:
|
89 |
st.warning("Please enter a topic!")
|
90 |
|
|
|
2 |
from PyPDF2 import PdfReader
|
3 |
import pandas as pd
|
4 |
from transformers import pipeline
|
5 |
+
import random
|
6 |
|
7 |
# Load the Hugging Face model for text generation (Bloom or any other open-source model)
|
8 |
@st.cache_resource
|
|
|
30 |
|
31 |
# Function to search for a topic in the extracted content
|
32 |
def search_topic_in_content(content, topic):
|
33 |
+
sentences = content.split(".") # Break content into sentences
|
34 |
+
topic_sentences = [s for s in sentences if topic.lower() in s.lower()] # Filter sentences containing the topic
|
35 |
+
return ". ".join(topic_sentences) if topic_sentences else None
|
36 |
|
37 |
+
# Function to generate content using Hugging Face model
|
38 |
+
def generate_ai_content(topic):
|
39 |
+
prompt = f"Explain '{topic}' in simple terms for engineering students. Provide examples and applications."
|
40 |
response = text_generator(prompt, max_length=300, num_return_sequences=1)
|
41 |
return response[0]['generated_text']
|
42 |
|
|
|
57 |
|
58 |
# File upload section
|
59 |
uploaded_file = st.sidebar.file_uploader("Upload Study Material (PDF/TXT/CSV)", type=["pdf", "txt", "csv"])
|
60 |
+
topic = st.sidebar.text_input("Enter a topic (e.g., Newton's Third Law, DC Motors)")
|
61 |
|
62 |
# Process uploaded file
|
63 |
content = ""
|
|
|
79 |
if st.button("Generate Study Material"):
|
80 |
if topic:
|
81 |
st.header(f"Study Material: {topic}")
|
82 |
+
# Extract relevant content from the uploaded material
|
83 |
filtered_content = search_topic_in_content(content, topic) if content else ""
|
84 |
if filtered_content:
|
85 |
+
st.write("**Relevant Extracted Content from Uploaded Material:**")
|
86 |
st.write(filtered_content)
|
87 |
+
else:
|
88 |
+
st.warning("No relevant content found in the uploaded material. Generating AI-based content instead.")
|
89 |
+
ai_content = generate_ai_content(topic)
|
90 |
+
st.write("**AI-Generated Content:**")
|
91 |
+
st.write(ai_content)
|
92 |
else:
|
93 |
st.warning("Please enter a topic!")
|
94 |
|