Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import matplotlib | |
matplotlib.use('Agg') | |
import math | |
import copy | |
import torch | |
from scene import Scene | |
import os | |
from tqdm import tqdm | |
from gaussian_renderer import render, render_gsplat | |
from argparse import ArgumentParser | |
from arguments import ModelParams, PipelineParams, get_combined_args | |
from gaussian_renderer import GaussianModel | |
from utils.pose_utils import get_tensor_from_camera | |
import numpy as np | |
import imageio.v3 as iio | |
from utils.graphics_utils import resize_render, make_video_divisble | |
from utils.trajectories import ( | |
get_arc_w2cs, | |
get_avg_w2c, | |
get_lemniscate_w2cs, | |
get_spiral_w2cs, | |
get_wander_w2cs, | |
get_lookat, | |
) | |
from utils.camera_utils import generate_interpolated_path, generate_ellipse_path | |
from utils.camera_traj_config import trajectory_configs | |
def save_interpolated_pose(model_path, iter, n_views): | |
org_pose = np.load(model_path + f"pose/pose_{iter}.npy") | |
# visualizer(org_pose, ["green" for _ in org_pose], model_path + "pose/poses_optimized.png") | |
n_interp = int(10 * 30 / n_views) # 10second, fps=30 | |
all_inter_pose = [] | |
for i in range(n_views-1): | |
tmp_inter_pose = generate_interpolated_path(poses=org_pose[i:i+2], n_interp=n_interp) | |
all_inter_pose.append(tmp_inter_pose) | |
all_inter_pose = np.array(all_inter_pose).reshape(-1, 3, 4) | |
inter_pose_list = [] | |
for p in all_inter_pose: | |
tmp_view = np.eye(4) | |
tmp_view[:3, :3] = p[:3, :3] | |
tmp_view[:3, 3] = p[:3, 3] | |
inter_pose_list.append(tmp_view) | |
inter_pose = np.stack(inter_pose_list, 0) | |
return inter_pose | |
def save_ellipse_pose(model_path, iter, n_views): | |
org_pose = np.load(model_path + f"pose/pose_{iter}.npy") | |
# visualizer(org_pose, ["green" for _ in org_pose], model_path + "pose/poses_optimized.png") | |
n_interp = int(10 * 30 / n_views) * (n_views-1) # 10second, fps=30 | |
all_inter_pose = generate_ellipse_path(org_pose, n_interp) | |
inter_pose_list = [] | |
for p in all_inter_pose: | |
c2w = np.eye(4) | |
c2w[:3, :4] = p | |
inter_pose_list.append(np.linalg.inv(c2w)) | |
inter_pose = np.stack(inter_pose_list, 0) | |
return inter_pose | |
def save_traj_pose(dataset, iter, args): | |
traj_up = trajectory_configs.get(args.dataset, {}).get(args.scene, {}).get('up', [-1, 1]) # Use -y axis in camera space as up vector | |
traj_params = trajectory_configs.get(args.dataset, {}).get(args.scene, {}).get(args.cam_traj, {}) | |
# 1. Get training camera poses and calculate trajectory | |
org_pose = np.load(dataset.model_path + f"pose/pose_{iter}.npy") | |
train_w2cs = torch.from_numpy(org_pose).cuda() | |
# Calculate reference camera pose | |
avg_w2c = get_avg_w2c(train_w2cs) | |
train_c2ws = torch.linalg.inv(train_w2cs) | |
lookat = get_lookat(train_c2ws[:, :3, -1], train_c2ws[:, :3, 2]) | |
# up = torch.tensor([0.0, 0.0, 1.0], device="cuda") | |
avg_c2w = torch.linalg.inv(avg_w2c) | |
up = traj_up[0] * (avg_c2w[:3, traj_up[1]]) | |
# up = traj_up[0] * (avg_c2w[:3, 0]+avg_c2w[:3, 1])/2 | |
# Temporarily load a camera to get intrinsic parameters | |
tmp_args = copy.deepcopy(args) | |
tmp_args.get_video = False | |
tmp_dataset = copy.deepcopy(dataset) | |
tmp_dataset.eval = False | |
with torch.no_grad(): | |
temp_gaussians = GaussianModel(dataset.sh_degree) | |
temp_scene = Scene(tmp_dataset, temp_gaussians, load_iteration=iter, opt=tmp_args, shuffle=False) | |
view = temp_scene.getTrainCameras()[0] | |
tanfovx = math.tan(view.FoVx * 0.5) | |
tanfovy = math.tan(view.FoVy * 0.5) | |
focal_length_x = view.image_width / (2 * tanfovx) | |
focal_length_y = view.image_height / (2 * tanfovy) | |
K = torch.tensor([[focal_length_x, 0, view.image_width/2], | |
[0, focal_length_y, view.image_height/2], | |
[0, 0, 1]], device="cuda") | |
img_wh = (view.image_width, view.image_height) | |
del temp_scene # Release temporary scene | |
del temp_gaussians # Release temporary gaussians | |
# Calculate bounding sphere radius | |
rc_train_c2ws = torch.einsum("ij,njk->nik", torch.linalg.inv(avg_w2c), train_c2ws) | |
rc_pos = rc_train_c2ws[:, :3, -1] | |
rads = (rc_pos.amax(0) - rc_pos.amin(0)) * 1.25 | |
num_frames = int(10 * 30 / args.n_views) * (args.n_views-1) | |
# Generate camera poses based on trajectory type | |
if args.cam_traj == 'arc': | |
w2cs = get_arc_w2cs( | |
ref_w2c=avg_w2c, | |
lookat=lookat, | |
up=up, | |
focal_length=K[0, 0].item(), | |
rads=rads, | |
num_frames=num_frames, | |
degree=traj_params.get('degree', 180.0) | |
) | |
elif args.cam_traj == 'spiral': | |
w2cs = get_spiral_w2cs( | |
ref_w2c=avg_w2c, | |
lookat=lookat, | |
up=up, | |
focal_length=K[0, 0].item(), | |
rads=rads, | |
num_frames=num_frames, | |
zrate=traj_params.get('zrate', 0.5), | |
rots=traj_params.get('rots', 1) | |
) | |
elif args.cam_traj == 'lemniscate': | |
w2cs = get_lemniscate_w2cs( | |
ref_w2c=avg_w2c, | |
lookat=lookat, | |
up=up, | |
focal_length=K[0, 0].item(), | |
rads=rads, | |
num_frames=num_frames, | |
degree=traj_params.get('degree', 45.0) | |
) | |
elif args.cam_traj == 'wander': | |
w2cs = get_wander_w2cs( | |
ref_w2c=avg_w2c, | |
focal_length=K[0, 0].item(), | |
num_frames=num_frames, | |
max_disp=traj_params.get('max_disp', 48.0) | |
) | |
else: | |
raise ValueError(f"Unknown camera trajectory: {args.cam_traj}") | |
return w2cs.cpu().numpy() | |
def render_sets(dataset: ModelParams, iteration: int, pipeline: PipelineParams, args): | |
if args.cam_traj in ['interpolated', 'ellipse']: | |
w2cs = globals().get(f'save_{args.cam_traj}_pose')(dataset.model_path, iteration, args.n_views) | |
else: | |
w2cs = save_traj_pose(dataset, iteration, args) | |
# visualizer(org_pose, ["green" for _ in org_pose], dataset.model_path + f"pose/poses_optimized.png") | |
# visualizer(w2cs, ["blue" for _ in w2cs], dataset.model_path + f"pose/poses_{args.cam_traj}.png") | |
np.save(dataset.model_path + f"pose/pose_{args.cam_traj}.npy", w2cs) | |
# 2. Load model and scene | |
with torch.no_grad(): | |
gaussians = GaussianModel(dataset.sh_degree) | |
scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False) | |
# bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] | |
bg_color = [1, 1, 1] | |
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") | |
# 3. Rendering | |
# render_path = os.path.join(dataset.model_path, args.cam_traj, f"ours_{iteration}", "renders") | |
# if os.path.exists(render_path): | |
# shutil.rmtree(render_path) | |
# makedirs(render_path, exist_ok=True) | |
video = [] | |
for idx, w2c in enumerate(tqdm(w2cs, desc="Rendering progress")): | |
camera_pose = get_tensor_from_camera(w2c.transpose(0, 1)) | |
view = scene.getTrainCameras()[0] # Use parameters from the first camera as template | |
if args.resize: | |
view = resize_render(view) | |
rendering = render( | |
view, gaussians, pipeline, background, camera_pose=camera_pose | |
)["render"] | |
# # Save single frame image | |
# torchvision.utils.save_image( | |
# rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png") | |
# ) | |
# Add to video list | |
# img = (rendering.detach().cpu().numpy() * 255.0).astype(np.uint8) | |
img = (torch.clamp(rendering, 0, 1).detach().cpu().numpy() * 255.0).round().astype(np.uint8) | |
video.append(img) | |
video = np.stack(video, 0).transpose(0, 2, 3, 1) | |
# Save video | |
if args.get_video: | |
video_dir = os.path.join(dataset.model_path, 'videos') | |
os.makedirs(video_dir, exist_ok=True) | |
output_video_file = os.path.join(video_dir, f'{args.scene}_{args.n_views}_view_{args.cam_traj}.mp4') | |
# iio.imwrite(output_video_file, make_video_divisble(video), fps=30) | |
iio.imwrite( | |
output_video_file, | |
make_video_divisble(video), | |
fps=30, | |
codec='libx264', | |
quality=None, | |
output_params=[ | |
'-crf', '28', # Good quality range between 18-28 | |
'-preset', 'veryslow', | |
'-pix_fmt', 'yuv420p', | |
'-movflags', '+faststart' | |
] | |
) | |
# if args.get_video: | |
# image_folder = os.path.join(dataset.model_path, f'{args.cam_traj}/ours_{args.iteration}/renders') | |
# output_video_file = os.path.join(dataset.model_path, f'{args.scene}_{args.n_views}_view_{args.cam_traj}.mp4') | |
# images_to_video(image_folder, output_video_file, fps=30) | |
if __name__ == "__main__": | |
# Set up command line argument parser | |
parser = ArgumentParser(description="Testing script parameters") | |
model = ModelParams(parser, sentinel=True) | |
pipeline = PipelineParams(parser) | |
parser.add_argument("--iteration", default=-1, type=int) | |
parser.add_argument("--quiet", action="store_true") | |
parser.add_argument("--get_video", action="store_true") | |
parser.add_argument("--n_views", default=120, type=int) | |
parser.add_argument("--dataset", default=None, type=str) | |
parser.add_argument("--scene", default=None, type=str) | |
parser.add_argument("--cam_traj", default='arc', type=str, | |
choices=['arc', 'spiral', 'lemniscate', 'wander', 'interpolated', 'ellipse'], | |
help="Camera trajectory type") | |
parser.add_argument("--resize", action="store_true", default=True, | |
help="If True, resize rendering to square") | |
parser.add_argument("--feat_type", type=str, nargs='*', default=None, | |
help="Feature type(s). Multiple types can be specified for combination.") | |
parser.add_argument("--method", type=str, default='dust3r', | |
help="Method of Initialization, e.g., 'dust3r' or 'mast3r'") | |
args = get_combined_args(parser) | |
print("Rendering " + args.model_path) | |
render_sets( | |
model.extract(args), | |
args.iteration, | |
pipeline.extract(args), | |
args, | |
) |