Spaces:
Running
on
Zero
Running
on
Zero
change gsplat to diff
Browse files- .gitignore +3 -1
- app.py +1 -0
- command +0 -33
- gaussian_renderer/__init__.py +128 -130
- run_video.py +2 -2
- train_feat2gs.py +2 -2
.gitignore
CHANGED
@@ -20,4 +20,6 @@ build/
|
|
20 |
*.mp4
|
21 |
.vs
|
22 |
/exp/
|
23 |
-
/dev/
|
|
|
|
|
|
20 |
*.mp4
|
21 |
.vs
|
22 |
/exp/
|
23 |
+
/dev/
|
24 |
+
gradio_cached_examples/
|
25 |
+
gradio_cache_folder/
|
app.py
CHANGED
@@ -12,6 +12,7 @@ import gradio as gr
|
|
12 |
import uuid
|
13 |
import spaces
|
14 |
|
|
|
15 |
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
16 |
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
17 |
|
|
|
12 |
import uuid
|
13 |
import spaces
|
14 |
|
15 |
+
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
16 |
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
17 |
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
|
18 |
|
command
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
conda activate feat2gs
|
2 |
-
cd Feat2GS/
|
3 |
-
|
4 |
-
bash scripts/run_feat2gs_eval_parallel.sh
|
5 |
-
bash scripts/run_feat2gs_eval.sh
|
6 |
-
bash scripts/run_instantsplat_eval_parallel.sh
|
7 |
-
bash scripts/run_feat2gs_eval_dtu_parallel.sh
|
8 |
-
|
9 |
-
python video/generate_video.py
|
10 |
-
|
11 |
-
bash scripts/run_all_trajectories.sh
|
12 |
-
bash scripts/run_video_render.sh
|
13 |
-
bash scripts/run_video_render_instantsplat.sh
|
14 |
-
bash scripts/run_video_render_dtu.sh
|
15 |
-
|
16 |
-
tensorboard --logdir=/home/chenyue/output/Feat2gs/output/eval/ --port=7001
|
17 |
-
|
18 |
-
cd /home/chenyue/output/Feat2gs/output/eval/Tanks/Train/6_views/feat2gs-G/dust3r/
|
19 |
-
tensorboard --logdir_spec \
|
20 |
-
radio:radio,\
|
21 |
-
dust3r:dust3r,\
|
22 |
-
dino_b16:dino_b16,\
|
23 |
-
mast3r:mast3r,\
|
24 |
-
dift:dift,\
|
25 |
-
dinov2:dinov2_b14,\
|
26 |
-
clip:clip_b16,\
|
27 |
-
mae:mae_b16,\
|
28 |
-
midas:midas_l16,\
|
29 |
-
sam:sam_base,\
|
30 |
-
iuvrgb:iuvrgb \
|
31 |
-
--port 7002
|
32 |
-
|
33 |
-
CUDA_VISIBLE_DEVICES=7 gradio demo.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gaussian_renderer/__init__.py
CHANGED
@@ -18,142 +18,140 @@ from utils.graphics_utils import depth_to_normal
|
|
18 |
|
19 |
### if use [diff-gaussian-rasterization](https://github.com/graphdeco-inria/diff-gaussian-rasterization)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
#
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#
|
85 |
-
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
#
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
#
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
|
150 |
|
151 |
### if use [gsplat](https://github.com/nerfstudio-project/gsplat)
|
152 |
|
153 |
from gsplat import rasterization
|
154 |
-
import spaces
|
155 |
|
156 |
-
@spaces.GPU(duration=150)
|
157 |
def render_gsplat(
|
158 |
viewpoint_camera,
|
159 |
pc : GaussianModel,
|
|
|
18 |
|
19 |
### if use [diff-gaussian-rasterization](https://github.com/graphdeco-inria/diff-gaussian-rasterization)
|
20 |
|
21 |
+
from diff_gaussian_rasterization import (
|
22 |
+
GaussianRasterizationSettings,
|
23 |
+
GaussianRasterizer,
|
24 |
+
)
|
25 |
+
from utils.sh_utils import eval_sh
|
26 |
+
|
27 |
+
def render(
|
28 |
+
viewpoint_camera,
|
29 |
+
pc: GaussianModel,
|
30 |
+
pipe,
|
31 |
+
bg_color: torch.Tensor,
|
32 |
+
scaling_modifier=1.0,
|
33 |
+
override_color=None,
|
34 |
+
camera_pose=None,
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Render the scene.
|
38 |
+
|
39 |
+
Background tensor (bg_color) must be on GPU!
|
40 |
+
"""
|
41 |
+
|
42 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
43 |
+
screenspace_points = (
|
44 |
+
torch.zeros_like(
|
45 |
+
pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
|
46 |
+
)
|
47 |
+
+ 0
|
48 |
+
)
|
49 |
+
try:
|
50 |
+
screenspace_points.retain_grad()
|
51 |
+
except:
|
52 |
+
pass
|
53 |
+
|
54 |
+
# Set up rasterization configuration
|
55 |
+
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
56 |
+
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
57 |
+
|
58 |
+
# Set camera pose as identity. Then, we will transform the Gaussians around camera_pose
|
59 |
+
w2c = torch.eye(4).cuda()
|
60 |
+
projmatrix = (
|
61 |
+
w2c.unsqueeze(0).bmm(viewpoint_camera.projection_matrix.unsqueeze(0))
|
62 |
+
).squeeze(0)
|
63 |
+
camera_pos = w2c.inverse()[3, :3]
|
64 |
+
raster_settings = GaussianRasterizationSettings(
|
65 |
+
image_height=int(viewpoint_camera.image_height),
|
66 |
+
image_width=int(viewpoint_camera.image_width),
|
67 |
+
tanfovx=tanfovx,
|
68 |
+
tanfovy=tanfovy,
|
69 |
+
bg=bg_color,
|
70 |
+
scale_modifier=scaling_modifier,
|
71 |
+
# viewmatrix=viewpoint_camera.world_view_transform,
|
72 |
+
# projmatrix=viewpoint_camera.full_proj_transform,
|
73 |
+
viewmatrix=w2c,
|
74 |
+
projmatrix=projmatrix,
|
75 |
+
sh_degree=pc.active_sh_degree,
|
76 |
+
# campos=viewpoint_camera.camera_center,
|
77 |
+
campos=camera_pos,
|
78 |
+
prefiltered=False,
|
79 |
+
debug=pipe.debug,
|
80 |
+
)
|
81 |
+
|
82 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
83 |
+
|
84 |
+
# means3D = pc.get_xyz
|
85 |
+
rel_w2c = get_camera_from_tensor(camera_pose)
|
86 |
+
# Transform mean and rot of Gaussians to camera frame
|
87 |
+
gaussians_xyz = pc._xyz.clone()
|
88 |
+
gaussians_rot = pc._rotation.clone()
|
89 |
+
|
90 |
+
xyz_ones = torch.ones(gaussians_xyz.shape[0], 1).cuda().float()
|
91 |
+
xyz_homo = torch.cat((gaussians_xyz, xyz_ones), dim=1)
|
92 |
+
gaussians_xyz_trans = (rel_w2c @ xyz_homo.T).T[:, :3]
|
93 |
+
gaussians_rot_trans = quadmultiply(camera_pose[:4], gaussians_rot)
|
94 |
+
means3D = gaussians_xyz_trans
|
95 |
+
means2D = screenspace_points
|
96 |
+
opacity = pc.get_opacity
|
97 |
+
|
98 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
99 |
+
# scaling / rotation by the rasterizer.
|
100 |
+
scales = None
|
101 |
+
rotations = None
|
102 |
+
cov3D_precomp = None
|
103 |
+
if pipe.compute_cov3D_python:
|
104 |
+
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
105 |
+
else:
|
106 |
+
scales = pc.get_scaling
|
107 |
+
rotations = gaussians_rot_trans # pc.get_rotation
|
108 |
+
|
109 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
110 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
111 |
+
shs = None
|
112 |
+
colors_precomp = None
|
113 |
+
if override_color is None:
|
114 |
+
if pipe.convert_SHs_python:
|
115 |
+
shs_view = pc.get_features.transpose(1, 2).view(
|
116 |
+
-1, 3, (pc.max_sh_degree + 1) ** 2
|
117 |
+
)
|
118 |
+
dir_pp = pc.get_xyz - viewpoint_camera.camera_center.repeat(
|
119 |
+
pc.get_features.shape[0], 1
|
120 |
+
)
|
121 |
+
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
|
122 |
+
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
123 |
+
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
124 |
+
else:
|
125 |
+
shs = pc.get_features
|
126 |
+
else:
|
127 |
+
colors_precomp = override_color
|
128 |
+
|
129 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
130 |
+
rendered_image, radii = rasterizer(
|
131 |
+
means3D=means3D,
|
132 |
+
means2D=means2D,
|
133 |
+
shs=shs,
|
134 |
+
colors_precomp=colors_precomp,
|
135 |
+
opacities=opacity,
|
136 |
+
scales=scales,
|
137 |
+
rotations=rotations,
|
138 |
+
cov3D_precomp=cov3D_precomp,
|
139 |
+
)
|
140 |
+
|
141 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
142 |
+
# They will be excluded from value updates used in the splitting criteria.
|
143 |
+
return {
|
144 |
+
"render": rendered_image,
|
145 |
+
"viewspace_points": screenspace_points,
|
146 |
+
"visibility_filter": radii > 0,
|
147 |
+
"radii": radii,
|
148 |
+
}
|
149 |
|
150 |
|
151 |
### if use [gsplat](https://github.com/nerfstudio-project/gsplat)
|
152 |
|
153 |
from gsplat import rasterization
|
|
|
154 |
|
|
|
155 |
def render_gsplat(
|
156 |
viewpoint_camera,
|
157 |
pc : GaussianModel,
|
run_video.py
CHANGED
@@ -18,7 +18,7 @@ import torch
|
|
18 |
from scene import Scene
|
19 |
import os
|
20 |
from tqdm import tqdm
|
21 |
-
from gaussian_renderer import render_gsplat
|
22 |
from argparse import ArgumentParser
|
23 |
from arguments import ModelParams, PipelineParams, get_combined_args
|
24 |
from gaussian_renderer import GaussianModel
|
@@ -201,7 +201,7 @@ def render_sets(dataset: ModelParams, iteration: int, pipeline: PipelineParams,
|
|
201 |
if args.resize:
|
202 |
view = resize_render(view)
|
203 |
|
204 |
-
rendering =
|
205 |
view, gaussians, pipeline, background, camera_pose=camera_pose
|
206 |
)["render"]
|
207 |
|
|
|
18 |
from scene import Scene
|
19 |
import os
|
20 |
from tqdm import tqdm
|
21 |
+
from gaussian_renderer import render, render_gsplat
|
22 |
from argparse import ArgumentParser
|
23 |
from arguments import ModelParams, PipelineParams, get_combined_args
|
24 |
from gaussian_renderer import GaussianModel
|
|
|
201 |
if args.resize:
|
202 |
view = resize_render(view)
|
203 |
|
204 |
+
rendering = render(
|
205 |
view, gaussians, pipeline, background, camera_pose=camera_pose
|
206 |
)["render"]
|
207 |
|
train_feat2gs.py
CHANGED
@@ -14,7 +14,7 @@ import numpy as np
|
|
14 |
import torch
|
15 |
from random import randint
|
16 |
from utils.loss_utils import l1_loss, ssim
|
17 |
-
from gaussian_renderer import render_gsplat
|
18 |
import sys
|
19 |
from scene import Scene, Feat2GaussianModel
|
20 |
from argparse import ArgumentParser
|
@@ -133,7 +133,7 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
|
133 |
Ll1 = torch.tensor(0)
|
134 |
|
135 |
if iteration > warm_iter:
|
136 |
-
render_pkg =
|
137 |
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
138 |
|
139 |
# Loss
|
|
|
14 |
import torch
|
15 |
from random import randint
|
16 |
from utils.loss_utils import l1_loss, ssim
|
17 |
+
from gaussian_renderer import render, render_gsplat
|
18 |
import sys
|
19 |
from scene import Scene, Feat2GaussianModel
|
20 |
from argparse import ArgumentParser
|
|
|
133 |
Ll1 = torch.tensor(0)
|
134 |
|
135 |
if iteration > warm_iter:
|
136 |
+
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose)
|
137 |
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
138 |
|
139 |
# Loss
|