Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import cv2 | |
import numpy as np | |
import PIL.Image | |
from PIL.ImageOps import exif_transpose | |
from plyfile import PlyData, PlyElement | |
import torchvision.transforms as tvf | |
import roma | |
import dust3r.cloud_opt.init_im_poses as init_fun | |
from dust3r.cloud_opt.base_opt import global_alignment_loop | |
from dust3r.utils.geometry import geotrf, inv, depthmap_to_absolute_camera_coordinates | |
from dust3r.cloud_opt.commons import edge_str | |
from dust3r.utils.image import _resize_pil_image, imread_cv2 | |
import dust3r.datasets.utils.cropping as cropping | |
import torch.nn.functional as F | |
def get_known_poses(scene): | |
if scene.has_im_poses: | |
known_poses_msk = torch.tensor([not (p.requires_grad) for p in scene.im_poses]) | |
known_poses = scene.get_im_poses() | |
return known_poses_msk.sum(), known_poses_msk, known_poses | |
else: | |
return 0, None, None | |
def init_from_pts3d(scene, pts3d, im_focals, im_poses): | |
# init poses | |
nkp, known_poses_msk, known_poses = get_known_poses(scene) | |
if nkp == 1: | |
raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose") | |
elif nkp > 1: | |
# global rigid SE3 alignment | |
s, R, T = init_fun.align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk]) | |
trf = init_fun.sRT_to_4x4(s, R, T, device=known_poses.device) | |
# rotate everything | |
im_poses = trf @ im_poses | |
im_poses[:, :3, :3] /= s # undo scaling on the rotation part | |
for img_pts3d in pts3d: | |
img_pts3d[:] = geotrf(trf, img_pts3d) | |
# set all pairwise poses | |
for e, (i, j) in enumerate(scene.edges): | |
i_j = edge_str(i, j) | |
# compute transform that goes from cam to world | |
s, R, T = init_fun.rigid_points_registration(scene.pred_i[i_j], pts3d[i], conf=scene.conf_i[i_j]) | |
scene._set_pose(scene.pw_poses, e, R, T, scale=s) | |
# take into account the scale normalization | |
s_factor = scene.get_pw_norm_scale_factor() | |
im_poses[:, :3, 3] *= s_factor # apply downscaling factor | |
for img_pts3d in pts3d: | |
img_pts3d *= s_factor | |
# init all image poses | |
if scene.has_im_poses: | |
for i in range(scene.n_imgs): | |
cam2world = im_poses[i] | |
depth = geotrf(inv(cam2world), pts3d[i])[..., 2] | |
scene._set_depthmap(i, depth) | |
scene._set_pose(scene.im_poses, i, cam2world) | |
if im_focals[i] is not None: | |
scene._set_focal(i, im_focals[i]) | |
if scene.verbose: | |
print(' init loss =', float(scene())) | |
def init_minimum_spanning_tree(scene, focal_avg=False, known_focal=None, **kw): | |
""" Init all camera poses (image-wise and pairwise poses) given | |
an initial set of pairwise estimations. | |
""" | |
device = scene.device | |
pts3d, _, im_focals, im_poses = init_fun.minimum_spanning_tree(scene.imshapes, scene.edges, | |
scene.pred_i, scene.pred_j, scene.conf_i, scene.conf_j, scene.im_conf, scene.min_conf_thr, | |
device, has_im_poses=scene.has_im_poses, verbose=scene.verbose, | |
**kw) | |
if known_focal is not None: | |
repeat_focal = np.repeat(known_focal, len(im_focals)) | |
for i in range(len(im_focals)): | |
im_focals[i] = known_focal | |
scene.preset_focal(known_focals=repeat_focal) | |
elif focal_avg: | |
im_focals_avg = np.array(im_focals).mean() | |
for i in range(len(im_focals)): | |
im_focals[i] = im_focals_avg | |
repeat_focal = np.array(im_focals)#.cpu().numpy() | |
scene.preset_focal(known_focals=repeat_focal) | |
return init_from_pts3d(scene, pts3d, im_focals, im_poses) | |
def compute_global_alignment(scene, init=None, niter_PnP=10, focal_avg=False, known_focal=None, **kw): | |
if init is None: | |
pass | |
elif init == 'msp' or init == 'mst': | |
init_minimum_spanning_tree(scene, niter_PnP=niter_PnP, focal_avg=focal_avg, known_focal=known_focal) | |
elif init == 'known_poses': | |
init_fun.init_from_known_poses(scene, min_conf_thr=scene.min_conf_thr, | |
niter_PnP=niter_PnP) | |
else: | |
raise ValueError(f'bad value for {init=}') | |
return global_alignment_loop(scene, **kw) | |
def load_images(folder_or_list, size, square_ok=False): | |
""" open and convert all images in a list or folder to proper input format for DUSt3R | |
""" | |
if isinstance(folder_or_list, str): | |
print(f'>> Loading images from {folder_or_list}') | |
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) | |
elif isinstance(folder_or_list, list): | |
print(f'>> Loading a list of {len(folder_or_list)} images') | |
root, folder_content = '', folder_or_list | |
else: | |
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})') | |
imgs = [] | |
for path in folder_content: | |
if not path.endswith(('.jpg', '.jpeg', '.png', '.JPG')): | |
continue | |
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB') | |
W1, H1 = img.size | |
if size == 224: | |
# resize short side to 224 (then crop) | |
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1))) | |
else: | |
# resize long side to 512 | |
img = _resize_pil_image(img, size) | |
W, H = img.size | |
W2 = W//16*16 | |
H2 = H//16*16 | |
img = np.array(img) | |
img = cv2.resize(img, (W2,H2), interpolation=cv2.INTER_LINEAR) | |
img = PIL.Image.fromarray(img) | |
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}') | |
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32( | |
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs)))) | |
assert imgs, 'no images foud at '+root | |
print(f' (Found {len(imgs)} images)') | |
return imgs, (W1,H1) | |
def load_cam_mvsnet(file, interval_scale=1): | |
""" read camera txt file """ | |
cam = np.zeros((2, 4, 4)) | |
words = file.read().split() | |
# read extrinsic | |
for i in range(0, 4): | |
for j in range(0, 4): | |
extrinsic_index = 4 * i + j + 1 | |
cam[0][i][j] = words[extrinsic_index] | |
# read intrinsic | |
for i in range(0, 3): | |
for j in range(0, 3): | |
intrinsic_index = 3 * i + j + 18 | |
cam[1][i][j] = words[intrinsic_index] | |
if len(words) == 29: | |
cam[1][3][0] = words[27] | |
cam[1][3][1] = float(words[28]) * interval_scale | |
cam[1][3][2] = 192 | |
cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2] | |
elif len(words) == 30: | |
cam[1][3][0] = words[27] | |
cam[1][3][1] = float(words[28]) * interval_scale | |
cam[1][3][2] = words[29] | |
cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2] | |
elif len(words) == 31: | |
cam[1][3][0] = words[27] | |
cam[1][3][1] = float(words[28]) * interval_scale | |
cam[1][3][2] = words[29] | |
cam[1][3][3] = words[30] | |
else: | |
cam[1][3][0] = 0 | |
cam[1][3][1] = 0 | |
cam[1][3][2] = 0 | |
cam[1][3][3] = 0 | |
extrinsic = cam[0].astype(np.float32) | |
intrinsic = cam[1].astype(np.float32) | |
return intrinsic, extrinsic | |
def _crop_resize_if_necessary(image, depthmap, intrinsics, resolution, rng=None, info=None): | |
""" This function: | |
- first downsizes the image with LANCZOS inteprolation, | |
which is better than bilinear interpolation in | |
""" | |
if not isinstance(image, PIL.Image.Image): | |
image = PIL.Image.fromarray(image) | |
# downscale with lanczos interpolation so that image.size == resolution | |
# cropping centered on the principal point | |
W, H = image.size | |
cx, cy = intrinsics[:2, 2].round().astype(int) | |
# calculate min distance to margin | |
min_margin_x = min(cx, W-cx) | |
min_margin_y = min(cy, H-cy) | |
assert min_margin_x > W/5, f'Bad principal point in view={info}' | |
assert min_margin_y > H/5, f'Bad principal point in view={info}' | |
## Center crop | |
# Crop on the principal point, make it always centered | |
# the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) | |
l, t = cx - min_margin_x, cy - min_margin_y | |
r, b = cx + min_margin_x, cy + min_margin_y | |
crop_bbox = (l, t, r, b) | |
image, depthmap, intrinsics = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox) | |
# transpose the resolution if necessary | |
W, H = image.size # new size | |
assert resolution[0] >= resolution[1] | |
if H > 1.1*W: | |
# image is portrait mode | |
resolution = resolution[::-1] | |
elif 0.9 < H/W < 1.1 and resolution[0] != resolution[1]: | |
# image is square, so we chose (portrait, landscape) randomly | |
if rng.integers(2): | |
resolution = resolution[::-1] | |
# high-quality Lanczos down-scaling | |
target_resolution = np.array(resolution) | |
## Recale with max factor, so one of width or height might be larger than target_resolution | |
image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, target_resolution) | |
# actual cropping (if necessary) with bilinear interpolation | |
intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=0.5) | |
crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution) | |
image, depthmap, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox) | |
return image, depthmap, intrinsics2 | |
def load_images_dtu(folder_or_list, size, scene_folder): | |
""" | |
Preprocessing DTU requires depth, camera param and mask. | |
We follow Splatt3R to compute valid_mask. | |
""" | |
if isinstance(folder_or_list, str): | |
print(f'>> Loading images from {folder_or_list}') | |
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) | |
elif isinstance(folder_or_list, list): | |
print(f'>> Loading a list of {len(folder_or_list)} images') | |
root = os.path.dirname(folder_or_list[0]) if folder_or_list else '' | |
folder_content = [os.path.basename(p) for p in folder_or_list] | |
else: | |
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})') | |
depth_root = os.path.join(scene_folder, 'depths') | |
mask_root = os.path.join(scene_folder, 'binary_masks') | |
cam_root = os.path.join(scene_folder, 'cams') | |
imgs = [] | |
for path in folder_content: | |
if not path.endswith(('.jpg', '.jpeg', '.png', '.JPG')): | |
continue | |
impath = os.path.join(root, path) | |
depthpath = os.path.join(depth_root, path.replace('.jpg', '.npy')) | |
campath = os.path.join(cam_root, path.replace('.jpg', '_cam.txt')) | |
maskpath = os.path.join(mask_root, path.replace('.jpg', '.png')) | |
rgb_image = imread_cv2(impath) | |
H1, W1 = rgb_image.shape[:2] | |
depthmap = np.load(depthpath) | |
depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) | |
mask = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED)/255.0 | |
mask = mask.astype(np.float32) | |
mask[mask>0.5] = 1.0 | |
mask[mask<0.5] = 0.0 | |
mask = cv2.resize(mask, (depthmap.shape[1], depthmap.shape[0]), interpolation=cv2.INTER_NEAREST) | |
kernel = np.ones((10, 10), np.uint8) # Define the erosion kernel | |
mask = cv2.erode(mask, kernel, iterations=1) | |
depthmap = depthmap * mask | |
cur_intrinsics, camera_pose = load_cam_mvsnet(open(campath, 'r')) | |
intrinsics = cur_intrinsics[:3, :3] | |
camera_pose = np.linalg.inv(camera_pose) | |
new_size = tuple(int(round(x*size/max(W1, H1))) for x in (W1, H1)) | |
W, H = new_size | |
W2 = W//16*16 | |
H2 = H//16*16 | |
rgb_image, depthmap, intrinsics = _crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics, (W2, H2), info=impath) | |
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}') | |
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
img = dict( | |
img=ImgNorm(rgb_image)[None], | |
true_shape=np.int32([rgb_image.size[::-1]]), | |
idx=len(imgs), | |
instance=str(len(imgs)), | |
depthmap=depthmap, | |
camera_pose=camera_pose, | |
camera_intrinsics=intrinsics | |
) | |
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**img) | |
img['pts3d'] = pts3d | |
img['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1) | |
imgs.append(img) | |
assert imgs, 'no images foud at '+root | |
print(f' (Found {len(imgs)} images)') | |
return imgs, (W1,H1) | |
def storePly(path, xyz, rgb, feat=None): | |
# Define the dtype for the structured array | |
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), | |
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), | |
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] | |
if feat is not None: | |
for i in range(feat.shape[1]): | |
dtype.append((f'feat_{i}', 'f4')) | |
normals = np.zeros_like(xyz) | |
elements = np.empty(xyz.shape[0], dtype=dtype) | |
attributes = np.concatenate((xyz, normals, rgb), axis=1) | |
if feat is not None: | |
attributes = np.concatenate((attributes, feat), axis=1) | |
elements[:] = list(map(tuple, attributes)) | |
# Create the PlyData object and write to file | |
vertex_element = PlyElement.describe(elements, 'vertex') | |
ply_data = PlyData([vertex_element]) | |
ply_data.write(path) | |
def R_to_quaternion(R): | |
""" | |
Convert a rotation matrix to a quaternion. | |
Parameters: | |
- R: A 3x3 numpy array representing a rotation matrix. | |
Returns: | |
- A numpy array representing the quaternion [w, x, y, z]. | |
""" | |
m00, m01, m02 = R[0, 0], R[0, 1], R[0, 2] | |
m10, m11, m12 = R[1, 0], R[1, 1], R[1, 2] | |
m20, m21, m22 = R[2, 0], R[2, 1], R[2, 2] | |
trace = m00 + m11 + m22 | |
if trace > 0: | |
s = 0.5 / np.sqrt(trace + 1.0) | |
w = 0.25 / s | |
x = (m21 - m12) * s | |
y = (m02 - m20) * s | |
z = (m10 - m01) * s | |
elif (m00 > m11) and (m00 > m22): | |
s = np.sqrt(1.0 + m00 - m11 - m22) * 2 | |
w = (m21 - m12) / s | |
x = 0.25 * s | |
y = (m01 + m10) / s | |
z = (m02 + m20) / s | |
elif m11 > m22: | |
s = np.sqrt(1.0 + m11 - m00 - m22) * 2 | |
w = (m02 - m20) / s | |
x = (m01 + m10) / s | |
y = 0.25 * s | |
z = (m12 + m21) / s | |
else: | |
s = np.sqrt(1.0 + m22 - m00 - m11) * 2 | |
w = (m10 - m01) / s | |
x = (m02 + m20) / s | |
y = (m12 + m21) / s | |
z = 0.25 * s | |
return np.array([w, x, y, z]) | |
def save_colmap_cameras(ori_size, intrinsics, camera_file): | |
with open(camera_file, 'w') as f: | |
for i, K in enumerate(intrinsics, 1): # Starting index at 1 | |
width, height = ori_size | |
scale_factor_x = width/2 / K[0, 2] | |
scale_factor_y = height/2 / K[1, 2] | |
# assert scale_factor_x==scale_factor_y, "scale factor is not same for x and y" | |
# print(f'scale factor is not same for x {scale_factor_x} and y {scale_factor_y}') | |
f.write(f"{i} PINHOLE {width} {height} {K[0, 0]*scale_factor_x} {K[1, 1]*scale_factor_x} {width/2} {height/2}\n") # scale focal | |
# f.write(f"{i} PINHOLE {width} {height} {K[0, 0]} {K[1, 1]} {K[0, 2]} {K[1, 2]}\n") | |
def save_colmap_images(poses, images_file, train_img_list): | |
with open(images_file, 'w') as f: | |
for i, pose in enumerate(poses, 1): # Starting index at 1 | |
# breakpoint() | |
pose = np.linalg.inv(pose) | |
R = pose[:3, :3] | |
t = pose[:3, 3] | |
q = R_to_quaternion(R) # Convert rotation matrix to quaternion | |
f.write(f"{i} {q[0]} {q[1]} {q[2]} {q[3]} {t[0]} {t[1]} {t[2]} {i} {os.path.basename(train_img_list[i-1])}\n") | |
f.write(f"\n") | |
def round_python3(number): | |
rounded = round(number) | |
if abs(number - rounded) == 0.5: | |
return 2.0 * round(number / 2.0) | |
return rounded | |
def rigid_points_registration(pts1, pts2, conf=None): | |
R, T, s = roma.rigid_points_registration( | |
pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf, compute_scaling=True) | |
return s, R, T # return un-scaled (R, T) | |