Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,544 Bytes
123719b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
import torch
import cv2
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
from plyfile import PlyData, PlyElement
import torchvision.transforms as tvf
import roma
import dust3r.cloud_opt.init_im_poses as init_fun
from dust3r.cloud_opt.base_opt import global_alignment_loop
from dust3r.utils.geometry import geotrf, inv, depthmap_to_absolute_camera_coordinates
from dust3r.cloud_opt.commons import edge_str
from dust3r.utils.image import _resize_pil_image, imread_cv2
import dust3r.datasets.utils.cropping as cropping
import torch.nn.functional as F
def get_known_poses(scene):
if scene.has_im_poses:
known_poses_msk = torch.tensor([not (p.requires_grad) for p in scene.im_poses])
known_poses = scene.get_im_poses()
return known_poses_msk.sum(), known_poses_msk, known_poses
else:
return 0, None, None
def init_from_pts3d(scene, pts3d, im_focals, im_poses):
# init poses
nkp, known_poses_msk, known_poses = get_known_poses(scene)
if nkp == 1:
raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose")
elif nkp > 1:
# global rigid SE3 alignment
s, R, T = init_fun.align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk])
trf = init_fun.sRT_to_4x4(s, R, T, device=known_poses.device)
# rotate everything
im_poses = trf @ im_poses
im_poses[:, :3, :3] /= s # undo scaling on the rotation part
for img_pts3d in pts3d:
img_pts3d[:] = geotrf(trf, img_pts3d)
# set all pairwise poses
for e, (i, j) in enumerate(scene.edges):
i_j = edge_str(i, j)
# compute transform that goes from cam to world
s, R, T = init_fun.rigid_points_registration(scene.pred_i[i_j], pts3d[i], conf=scene.conf_i[i_j])
scene._set_pose(scene.pw_poses, e, R, T, scale=s)
# take into account the scale normalization
s_factor = scene.get_pw_norm_scale_factor()
im_poses[:, :3, 3] *= s_factor # apply downscaling factor
for img_pts3d in pts3d:
img_pts3d *= s_factor
# init all image poses
if scene.has_im_poses:
for i in range(scene.n_imgs):
cam2world = im_poses[i]
depth = geotrf(inv(cam2world), pts3d[i])[..., 2]
scene._set_depthmap(i, depth)
scene._set_pose(scene.im_poses, i, cam2world)
if im_focals[i] is not None:
scene._set_focal(i, im_focals[i])
if scene.verbose:
print(' init loss =', float(scene()))
@torch.no_grad()
def init_minimum_spanning_tree(scene, focal_avg=False, known_focal=None, **kw):
""" Init all camera poses (image-wise and pairwise poses) given
an initial set of pairwise estimations.
"""
device = scene.device
pts3d, _, im_focals, im_poses = init_fun.minimum_spanning_tree(scene.imshapes, scene.edges,
scene.pred_i, scene.pred_j, scene.conf_i, scene.conf_j, scene.im_conf, scene.min_conf_thr,
device, has_im_poses=scene.has_im_poses, verbose=scene.verbose,
**kw)
if known_focal is not None:
repeat_focal = np.repeat(known_focal, len(im_focals))
for i in range(len(im_focals)):
im_focals[i] = known_focal
scene.preset_focal(known_focals=repeat_focal)
elif focal_avg:
im_focals_avg = np.array(im_focals).mean()
for i in range(len(im_focals)):
im_focals[i] = im_focals_avg
repeat_focal = np.array(im_focals)#.cpu().numpy()
scene.preset_focal(known_focals=repeat_focal)
return init_from_pts3d(scene, pts3d, im_focals, im_poses)
@torch.cuda.amp.autocast(enabled=False)
def compute_global_alignment(scene, init=None, niter_PnP=10, focal_avg=False, known_focal=None, **kw):
if init is None:
pass
elif init == 'msp' or init == 'mst':
init_minimum_spanning_tree(scene, niter_PnP=niter_PnP, focal_avg=focal_avg, known_focal=known_focal)
elif init == 'known_poses':
init_fun.init_from_known_poses(scene, min_conf_thr=scene.min_conf_thr,
niter_PnP=niter_PnP)
else:
raise ValueError(f'bad value for {init=}')
return global_alignment_loop(scene, **kw)
def load_images(folder_or_list, size, square_ok=False):
""" open and convert all images in a list or folder to proper input format for DUSt3R
"""
if isinstance(folder_or_list, str):
print(f'>> Loading images from {folder_or_list}')
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
print(f'>> Loading a list of {len(folder_or_list)} images')
root, folder_content = '', folder_or_list
else:
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')
imgs = []
for path in folder_content:
if not path.endswith(('.jpg', '.jpeg', '.png', '.JPG')):
continue
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
W1, H1 = img.size
if size == 224:
# resize short side to 224 (then crop)
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
else:
# resize long side to 512
img = _resize_pil_image(img, size)
W, H = img.size
W2 = W//16*16
H2 = H//16*16
img = np.array(img)
img = cv2.resize(img, (W2,H2), interpolation=cv2.INTER_LINEAR)
img = PIL.Image.fromarray(img)
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
assert imgs, 'no images foud at '+root
print(f' (Found {len(imgs)} images)')
return imgs, (W1,H1)
def load_cam_mvsnet(file, interval_scale=1):
""" read camera txt file """
cam = np.zeros((2, 4, 4))
words = file.read().split()
# read extrinsic
for i in range(0, 4):
for j in range(0, 4):
extrinsic_index = 4 * i + j + 1
cam[0][i][j] = words[extrinsic_index]
# read intrinsic
for i in range(0, 3):
for j in range(0, 3):
intrinsic_index = 3 * i + j + 18
cam[1][i][j] = words[intrinsic_index]
if len(words) == 29:
cam[1][3][0] = words[27]
cam[1][3][1] = float(words[28]) * interval_scale
cam[1][3][2] = 192
cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
elif len(words) == 30:
cam[1][3][0] = words[27]
cam[1][3][1] = float(words[28]) * interval_scale
cam[1][3][2] = words[29]
cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
elif len(words) == 31:
cam[1][3][0] = words[27]
cam[1][3][1] = float(words[28]) * interval_scale
cam[1][3][2] = words[29]
cam[1][3][3] = words[30]
else:
cam[1][3][0] = 0
cam[1][3][1] = 0
cam[1][3][2] = 0
cam[1][3][3] = 0
extrinsic = cam[0].astype(np.float32)
intrinsic = cam[1].astype(np.float32)
return intrinsic, extrinsic
def _crop_resize_if_necessary(image, depthmap, intrinsics, resolution, rng=None, info=None):
""" This function:
- first downsizes the image with LANCZOS inteprolation,
which is better than bilinear interpolation in
"""
if not isinstance(image, PIL.Image.Image):
image = PIL.Image.fromarray(image)
# downscale with lanczos interpolation so that image.size == resolution
# cropping centered on the principal point
W, H = image.size
cx, cy = intrinsics[:2, 2].round().astype(int)
# calculate min distance to margin
min_margin_x = min(cx, W-cx)
min_margin_y = min(cy, H-cy)
assert min_margin_x > W/5, f'Bad principal point in view={info}'
assert min_margin_y > H/5, f'Bad principal point in view={info}'
## Center crop
# Crop on the principal point, make it always centered
# the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
l, t = cx - min_margin_x, cy - min_margin_y
r, b = cx + min_margin_x, cy + min_margin_y
crop_bbox = (l, t, r, b)
image, depthmap, intrinsics = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox)
# transpose the resolution if necessary
W, H = image.size # new size
assert resolution[0] >= resolution[1]
if H > 1.1*W:
# image is portrait mode
resolution = resolution[::-1]
elif 0.9 < H/W < 1.1 and resolution[0] != resolution[1]:
# image is square, so we chose (portrait, landscape) randomly
if rng.integers(2):
resolution = resolution[::-1]
# high-quality Lanczos down-scaling
target_resolution = np.array(resolution)
## Recale with max factor, so one of width or height might be larger than target_resolution
image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, target_resolution)
# actual cropping (if necessary) with bilinear interpolation
intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=0.5)
crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution)
image, depthmap, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox)
return image, depthmap, intrinsics2
def load_images_dtu(folder_or_list, size, scene_folder):
"""
Preprocessing DTU requires depth, camera param and mask.
We follow Splatt3R to compute valid_mask.
"""
if isinstance(folder_or_list, str):
print(f'>> Loading images from {folder_or_list}')
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
print(f'>> Loading a list of {len(folder_or_list)} images')
root = os.path.dirname(folder_or_list[0]) if folder_or_list else ''
folder_content = [os.path.basename(p) for p in folder_or_list]
else:
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')
depth_root = os.path.join(scene_folder, 'depths')
mask_root = os.path.join(scene_folder, 'binary_masks')
cam_root = os.path.join(scene_folder, 'cams')
imgs = []
for path in folder_content:
if not path.endswith(('.jpg', '.jpeg', '.png', '.JPG')):
continue
impath = os.path.join(root, path)
depthpath = os.path.join(depth_root, path.replace('.jpg', '.npy'))
campath = os.path.join(cam_root, path.replace('.jpg', '_cam.txt'))
maskpath = os.path.join(mask_root, path.replace('.jpg', '.png'))
rgb_image = imread_cv2(impath)
H1, W1 = rgb_image.shape[:2]
depthmap = np.load(depthpath)
depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0)
mask = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED)/255.0
mask = mask.astype(np.float32)
mask[mask>0.5] = 1.0
mask[mask<0.5] = 0.0
mask = cv2.resize(mask, (depthmap.shape[1], depthmap.shape[0]), interpolation=cv2.INTER_NEAREST)
kernel = np.ones((10, 10), np.uint8) # Define the erosion kernel
mask = cv2.erode(mask, kernel, iterations=1)
depthmap = depthmap * mask
cur_intrinsics, camera_pose = load_cam_mvsnet(open(campath, 'r'))
intrinsics = cur_intrinsics[:3, :3]
camera_pose = np.linalg.inv(camera_pose)
new_size = tuple(int(round(x*size/max(W1, H1))) for x in (W1, H1))
W, H = new_size
W2 = W//16*16
H2 = H//16*16
rgb_image, depthmap, intrinsics = _crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, (W2, H2), info=impath)
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
img = dict(
img=ImgNorm(rgb_image)[None],
true_shape=np.int32([rgb_image.size[::-1]]),
idx=len(imgs),
instance=str(len(imgs)),
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics
)
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**img)
img['pts3d'] = pts3d
img['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1)
imgs.append(img)
assert imgs, 'no images foud at '+root
print(f' (Found {len(imgs)} images)')
return imgs, (W1,H1)
def storePly(path, xyz, rgb, feat=None):
# Define the dtype for the structured array
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
if feat is not None:
for i in range(feat.shape[1]):
dtype.append((f'feat_{i}', 'f4'))
normals = np.zeros_like(xyz)
elements = np.empty(xyz.shape[0], dtype=dtype)
attributes = np.concatenate((xyz, normals, rgb), axis=1)
if feat is not None:
attributes = np.concatenate((attributes, feat), axis=1)
elements[:] = list(map(tuple, attributes))
# Create the PlyData object and write to file
vertex_element = PlyElement.describe(elements, 'vertex')
ply_data = PlyData([vertex_element])
ply_data.write(path)
def R_to_quaternion(R):
"""
Convert a rotation matrix to a quaternion.
Parameters:
- R: A 3x3 numpy array representing a rotation matrix.
Returns:
- A numpy array representing the quaternion [w, x, y, z].
"""
m00, m01, m02 = R[0, 0], R[0, 1], R[0, 2]
m10, m11, m12 = R[1, 0], R[1, 1], R[1, 2]
m20, m21, m22 = R[2, 0], R[2, 1], R[2, 2]
trace = m00 + m11 + m22
if trace > 0:
s = 0.5 / np.sqrt(trace + 1.0)
w = 0.25 / s
x = (m21 - m12) * s
y = (m02 - m20) * s
z = (m10 - m01) * s
elif (m00 > m11) and (m00 > m22):
s = np.sqrt(1.0 + m00 - m11 - m22) * 2
w = (m21 - m12) / s
x = 0.25 * s
y = (m01 + m10) / s
z = (m02 + m20) / s
elif m11 > m22:
s = np.sqrt(1.0 + m11 - m00 - m22) * 2
w = (m02 - m20) / s
x = (m01 + m10) / s
y = 0.25 * s
z = (m12 + m21) / s
else:
s = np.sqrt(1.0 + m22 - m00 - m11) * 2
w = (m10 - m01) / s
x = (m02 + m20) / s
y = (m12 + m21) / s
z = 0.25 * s
return np.array([w, x, y, z])
def save_colmap_cameras(ori_size, intrinsics, camera_file):
with open(camera_file, 'w') as f:
for i, K in enumerate(intrinsics, 1): # Starting index at 1
width, height = ori_size
scale_factor_x = width/2 / K[0, 2]
scale_factor_y = height/2 / K[1, 2]
# assert scale_factor_x==scale_factor_y, "scale factor is not same for x and y"
# print(f'scale factor is not same for x {scale_factor_x} and y {scale_factor_y}')
f.write(f"{i} PINHOLE {width} {height} {K[0, 0]*scale_factor_x} {K[1, 1]*scale_factor_x} {width/2} {height/2}\n") # scale focal
# f.write(f"{i} PINHOLE {width} {height} {K[0, 0]} {K[1, 1]} {K[0, 2]} {K[1, 2]}\n")
def save_colmap_images(poses, images_file, train_img_list):
with open(images_file, 'w') as f:
for i, pose in enumerate(poses, 1): # Starting index at 1
# breakpoint()
pose = np.linalg.inv(pose)
R = pose[:3, :3]
t = pose[:3, 3]
q = R_to_quaternion(R) # Convert rotation matrix to quaternion
f.write(f"{i} {q[0]} {q[1]} {q[2]} {q[3]} {t[0]} {t[1]} {t[2]} {i} {os.path.basename(train_img_list[i-1])}\n")
f.write(f"\n")
def round_python3(number):
rounded = round(number)
if abs(number - rounded) == 0.5:
return 2.0 * round(number / 2.0)
return rounded
def rigid_points_registration(pts1, pts2, conf=None):
R, T, s = roma.rigid_points_registration(
pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf, compute_scaling=True)
return s, R, T # return un-scaled (R, T)
|