File size: 16,544 Bytes
123719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import torch
import cv2
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
from plyfile import PlyData, PlyElement
import torchvision.transforms as tvf
import roma
import dust3r.cloud_opt.init_im_poses as init_fun
from dust3r.cloud_opt.base_opt import global_alignment_loop
from dust3r.utils.geometry import geotrf, inv, depthmap_to_absolute_camera_coordinates
from dust3r.cloud_opt.commons import edge_str
from dust3r.utils.image import _resize_pil_image, imread_cv2
import dust3r.datasets.utils.cropping as cropping
import torch.nn.functional as F

def get_known_poses(scene):
        if scene.has_im_poses:
            known_poses_msk = torch.tensor([not (p.requires_grad) for p in scene.im_poses])
            known_poses = scene.get_im_poses()
            return known_poses_msk.sum(), known_poses_msk, known_poses
        else:
            return 0, None, None

def init_from_pts3d(scene, pts3d, im_focals, im_poses):
    # init poses
    nkp, known_poses_msk, known_poses = get_known_poses(scene)
    if nkp == 1:
        raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose")
    elif nkp > 1:
        # global rigid SE3 alignment
        s, R, T = init_fun.align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk])
        trf = init_fun.sRT_to_4x4(s, R, T, device=known_poses.device)

        # rotate everything
        im_poses = trf @ im_poses
        im_poses[:, :3, :3] /= s  # undo scaling on the rotation part
        for img_pts3d in pts3d:
            img_pts3d[:] = geotrf(trf, img_pts3d)

    # set all pairwise poses
    for e, (i, j) in enumerate(scene.edges):
        i_j = edge_str(i, j)
        # compute transform that goes from cam to world
        s, R, T = init_fun.rigid_points_registration(scene.pred_i[i_j], pts3d[i], conf=scene.conf_i[i_j])
        scene._set_pose(scene.pw_poses, e, R, T, scale=s)

    # take into account the scale normalization
    s_factor = scene.get_pw_norm_scale_factor()
    im_poses[:, :3, 3] *= s_factor  # apply downscaling factor
    for img_pts3d in pts3d:
        img_pts3d *= s_factor

    # init all image poses
    if scene.has_im_poses:
        for i in range(scene.n_imgs):
            cam2world = im_poses[i]
            depth = geotrf(inv(cam2world), pts3d[i])[..., 2]
            scene._set_depthmap(i, depth)
            scene._set_pose(scene.im_poses, i, cam2world)
            if im_focals[i] is not None:
                scene._set_focal(i, im_focals[i])

    if scene.verbose:
        print(' init loss =', float(scene()))

@torch.no_grad()
def init_minimum_spanning_tree(scene, focal_avg=False, known_focal=None, **kw):
    """ Init all camera poses (image-wise and pairwise poses) given
        an initial set of pairwise estimations.
    """
    device = scene.device
    pts3d, _, im_focals, im_poses = init_fun.minimum_spanning_tree(scene.imshapes, scene.edges,
                                                        scene.pred_i, scene.pred_j, scene.conf_i, scene.conf_j, scene.im_conf, scene.min_conf_thr,
                                                        device, has_im_poses=scene.has_im_poses, verbose=scene.verbose,
                                                        **kw)

    if known_focal is not None:
        repeat_focal = np.repeat(known_focal, len(im_focals))
        for i in range(len(im_focals)):
            im_focals[i] = known_focal
        scene.preset_focal(known_focals=repeat_focal)
    elif focal_avg:
        im_focals_avg = np.array(im_focals).mean()
        for i in range(len(im_focals)):
            im_focals[i] = im_focals_avg
        repeat_focal = np.array(im_focals)#.cpu().numpy()
        scene.preset_focal(known_focals=repeat_focal)

    return init_from_pts3d(scene, pts3d, im_focals, im_poses)

@torch.cuda.amp.autocast(enabled=False)
def compute_global_alignment(scene, init=None, niter_PnP=10, focal_avg=False, known_focal=None, **kw):
    if init is None:
        pass
    elif init == 'msp' or init == 'mst':
        init_minimum_spanning_tree(scene, niter_PnP=niter_PnP, focal_avg=focal_avg, known_focal=known_focal)
    elif init == 'known_poses':
        init_fun.init_from_known_poses(scene, min_conf_thr=scene.min_conf_thr,
                                        niter_PnP=niter_PnP)
    else:
        raise ValueError(f'bad value for {init=}')

    return global_alignment_loop(scene, **kw)



def load_images(folder_or_list, size, square_ok=False):
    """ open and convert all images in a list or folder to proper input format for DUSt3R
    """
    if isinstance(folder_or_list, str):
        print(f'>> Loading images from {folder_or_list}')
        root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))

    elif isinstance(folder_or_list, list):
        print(f'>> Loading a list of {len(folder_or_list)} images')
        root, folder_content = '', folder_or_list

    else:
        raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')

    imgs = []
    for path in folder_content:
        if not path.endswith(('.jpg', '.jpeg', '.png', '.JPG')):
            continue
        img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
        W1, H1 = img.size
        if size == 224:
            # resize short side to 224 (then crop)
            img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
        else:
            # resize long side to 512
            img = _resize_pil_image(img, size)
        W, H = img.size
        W2 = W//16*16
        H2 = H//16*16
        img = np.array(img)
        img = cv2.resize(img, (W2,H2), interpolation=cv2.INTER_LINEAR)
        img = PIL.Image.fromarray(img)

        print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
        ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
        imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
            [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))

    assert imgs, 'no images foud at '+root
    print(f' (Found {len(imgs)} images)')
    return imgs, (W1,H1)


def load_cam_mvsnet(file, interval_scale=1):
    """ read camera txt file """
    cam = np.zeros((2, 4, 4))
    words = file.read().split()
    # read extrinsic
    for i in range(0, 4):
        for j in range(0, 4):
            extrinsic_index = 4 * i + j + 1
            cam[0][i][j] = words[extrinsic_index]

    # read intrinsic
    for i in range(0, 3):
        for j in range(0, 3):
            intrinsic_index = 3 * i + j + 18
            cam[1][i][j] = words[intrinsic_index]

    if len(words) == 29:
        cam[1][3][0] = words[27]
        cam[1][3][1] = float(words[28]) * interval_scale
        cam[1][3][2] = 192
        cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
    elif len(words) == 30:
        cam[1][3][0] = words[27]
        cam[1][3][1] = float(words[28]) * interval_scale
        cam[1][3][2] = words[29]
        cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
    elif len(words) == 31:
        cam[1][3][0] = words[27]
        cam[1][3][1] = float(words[28]) * interval_scale
        cam[1][3][2] = words[29]
        cam[1][3][3] = words[30]
    else:
        cam[1][3][0] = 0
        cam[1][3][1] = 0
        cam[1][3][2] = 0
        cam[1][3][3] = 0
    
    
    extrinsic = cam[0].astype(np.float32)
    intrinsic = cam[1].astype(np.float32)

    return intrinsic, extrinsic


def _crop_resize_if_necessary(image, depthmap, intrinsics, resolution, rng=None, info=None):
    """ This function:
        - first downsizes the image with LANCZOS inteprolation,
            which is better than bilinear interpolation in
    """
    if not isinstance(image, PIL.Image.Image):
        image = PIL.Image.fromarray(image)

    # downscale with lanczos interpolation so that image.size == resolution
    # cropping centered on the principal point
    W, H = image.size
    cx, cy = intrinsics[:2, 2].round().astype(int)
    
    # calculate min distance to margin
    min_margin_x = min(cx, W-cx)
    min_margin_y = min(cy, H-cy)
    assert min_margin_x > W/5, f'Bad principal point in view={info}'
    assert min_margin_y > H/5, f'Bad principal point in view={info}'
    
    ## Center crop
    # Crop on the principal point, make it always centered
    # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
    l, t = cx - min_margin_x, cy - min_margin_y
    r, b = cx + min_margin_x, cy + min_margin_y
    crop_bbox = (l, t, r, b)
    image, depthmap, intrinsics = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox)

    # transpose the resolution if necessary
    W, H = image.size  # new size
    assert resolution[0] >= resolution[1]
    if H > 1.1*W:
        # image is portrait mode
        resolution = resolution[::-1]
    elif 0.9 < H/W < 1.1 and resolution[0] != resolution[1]:
        # image is square, so we chose (portrait, landscape) randomly
        if rng.integers(2):
            resolution = resolution[::-1]

    # high-quality Lanczos down-scaling
    target_resolution = np.array(resolution)
    
    ## Recale with max factor, so  one of width or height might be larger than target_resolution
    image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, target_resolution)

    # actual cropping (if necessary) with bilinear interpolation
    intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=0.5)
    crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution)
    image, depthmap, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox)

    return image, depthmap, intrinsics2


def load_images_dtu(folder_or_list, size, scene_folder):
    """ 
    Preprocessing DTU requires depth, camera param and mask.
    We follow Splatt3R to compute valid_mask.
    """
    if isinstance(folder_or_list, str):
        print(f'>> Loading images from {folder_or_list}')
        root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))

    elif isinstance(folder_or_list, list):
        print(f'>> Loading a list of {len(folder_or_list)} images')
        root = os.path.dirname(folder_or_list[0]) if folder_or_list else ''
        folder_content = [os.path.basename(p) for p in folder_or_list]

    else:
        raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')

    depth_root = os.path.join(scene_folder, 'depths')
    mask_root = os.path.join(scene_folder, 'binary_masks')
    cam_root = os.path.join(scene_folder, 'cams')

    imgs = []
    for path in folder_content:
        if not path.endswith(('.jpg', '.jpeg', '.png', '.JPG')):
            continue

        impath = os.path.join(root, path)
        depthpath = os.path.join(depth_root, path.replace('.jpg', '.npy'))
        campath = os.path.join(cam_root, path.replace('.jpg', '_cam.txt'))
        maskpath = os.path.join(mask_root, path.replace('.jpg', '.png'))

        rgb_image = imread_cv2(impath)
        H1, W1 = rgb_image.shape[:2]
        depthmap = np.load(depthpath)
        depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0)

        mask = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED)/255.0
        mask = mask.astype(np.float32)

        mask[mask>0.5] = 1.0
        mask[mask<0.5] = 0.0

        mask = cv2.resize(mask, (depthmap.shape[1], depthmap.shape[0]), interpolation=cv2.INTER_NEAREST)
        kernel = np.ones((10, 10), np.uint8)  # Define the erosion kernel
        mask = cv2.erode(mask, kernel, iterations=1)
        depthmap = depthmap * mask
        
        cur_intrinsics, camera_pose = load_cam_mvsnet(open(campath, 'r'))
        intrinsics = cur_intrinsics[:3, :3]
        camera_pose = np.linalg.inv(camera_pose)

        new_size = tuple(int(round(x*size/max(W1, H1))) for x in (W1, H1))
        W, H = new_size
        W2 = W//16*16
        H2 = H//16*16
        
        rgb_image, depthmap, intrinsics = _crop_resize_if_necessary(
            rgb_image, depthmap, intrinsics, (W2, H2), info=impath)
        
        print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
        ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

        img = dict(
            img=ImgNorm(rgb_image)[None], 
            true_shape=np.int32([rgb_image.size[::-1]]), 
            idx=len(imgs), 
            instance=str(len(imgs)),
            depthmap=depthmap,
            camera_pose=camera_pose,
            camera_intrinsics=intrinsics
        ) 

        pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**img)
        img['pts3d'] = pts3d
        img['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1)

        imgs.append(img)


    assert imgs, 'no images foud at '+root
    print(f' (Found {len(imgs)} images)')
    return imgs, (W1,H1)


def storePly(path, xyz, rgb, feat=None):
    # Define the dtype for the structured array
    dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
            ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
            ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]

    if feat is not None:
        for i in range(feat.shape[1]):
            dtype.append((f'feat_{i}', 'f4'))

    normals = np.zeros_like(xyz)

    elements = np.empty(xyz.shape[0], dtype=dtype)
    attributes = np.concatenate((xyz, normals, rgb), axis=1)

    if feat is not None:
        attributes = np.concatenate((attributes, feat), axis=1)

    elements[:] = list(map(tuple, attributes))

    # Create the PlyData object and write to file
    vertex_element = PlyElement.describe(elements, 'vertex')
    ply_data = PlyData([vertex_element])
    ply_data.write(path)

def R_to_quaternion(R):
    """
    Convert a rotation matrix to a quaternion.

    Parameters:
    - R: A 3x3 numpy array representing a rotation matrix.

    Returns:
    - A numpy array representing the quaternion [w, x, y, z].
    """
    m00, m01, m02 = R[0, 0], R[0, 1], R[0, 2]
    m10, m11, m12 = R[1, 0], R[1, 1], R[1, 2]
    m20, m21, m22 = R[2, 0], R[2, 1], R[2, 2]
    trace = m00 + m11 + m22

    if trace > 0:
        s = 0.5 / np.sqrt(trace + 1.0)
        w = 0.25 / s
        x = (m21 - m12) * s
        y = (m02 - m20) * s
        z = (m10 - m01) * s
    elif (m00 > m11) and (m00 > m22):
        s = np.sqrt(1.0 + m00 - m11 - m22) * 2
        w = (m21 - m12) / s
        x = 0.25 * s
        y = (m01 + m10) / s
        z = (m02 + m20) / s
    elif m11 > m22:
        s = np.sqrt(1.0 + m11 - m00 - m22) * 2
        w = (m02 - m20) / s
        x = (m01 + m10) / s
        y = 0.25 * s
        z = (m12 + m21) / s
    else:
        s = np.sqrt(1.0 + m22 - m00 - m11) * 2
        w = (m10 - m01) / s
        x = (m02 + m20) / s
        y = (m12 + m21) / s
        z = 0.25 * s

    return np.array([w, x, y, z])

def save_colmap_cameras(ori_size, intrinsics, camera_file):
    with open(camera_file, 'w') as f:
        for i, K in enumerate(intrinsics, 1):  # Starting index at 1
            width, height = ori_size
            scale_factor_x = width/2  / K[0, 2]
            scale_factor_y = height/2  / K[1, 2]
            # assert scale_factor_x==scale_factor_y, "scale factor is not same for x and y"
            # print(f'scale factor is not same for x {scale_factor_x} and y {scale_factor_y}')
            f.write(f"{i} PINHOLE {width} {height} {K[0, 0]*scale_factor_x} {K[1, 1]*scale_factor_x} {width/2} {height/2}\n") # scale focal
            # f.write(f"{i} PINHOLE {width} {height} {K[0, 0]} {K[1, 1]} {K[0, 2]} {K[1, 2]}\n")

def save_colmap_images(poses, images_file, train_img_list):
    with open(images_file, 'w') as f:
        for i, pose in enumerate(poses, 1):  # Starting index at 1
            # breakpoint()
            pose = np.linalg.inv(pose)
            R = pose[:3, :3]
            t = pose[:3, 3]
            q = R_to_quaternion(R)  # Convert rotation matrix to quaternion
            f.write(f"{i} {q[0]} {q[1]} {q[2]} {q[3]} {t[0]} {t[1]} {t[2]} {i} {os.path.basename(train_img_list[i-1])}\n")
            f.write(f"\n")


def round_python3(number):
    rounded = round(number)
    if abs(number - rounded) == 0.5:
        return 2.0 * round(number / 2.0)
    return rounded


def rigid_points_registration(pts1, pts2, conf=None):
    R, T, s = roma.rigid_points_registration(
        pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf, compute_scaling=True)
    return s, R, T  # return un-scaled (R, T)