Spaces:
Sleeping
Sleeping
File size: 11,649 Bytes
123719b 12822cb 123719b b100032 123719b 12822cb 123719b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import numpy as np
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, render_gsplat
import sys
from scene import Scene, Feat2GaussianModel
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils.pose_utils import get_camera_from_tensor
from tqdm import tqdm
from time import perf_counter
def save_pose(path, quat_pose, train_cams, llffhold=2):
output_poses=[]
index_colmap = [cam.colmap_id for cam in train_cams]
for quat_t in quat_pose:
w2c = get_camera_from_tensor(quat_t)
output_poses.append(w2c)
colmap_poses = []
for i in range(len(index_colmap)):
ind = index_colmap.index(i+1)
bb=output_poses[ind]
bb = bb#.inverse()
colmap_poses.append(bb)
colmap_poses = torch.stack(colmap_poses).detach().cpu().numpy()
np.save(path, colmap_poses)
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, args):
first_iter = 0
# tb_writer = prepare_output_and_logger(dataset, opt.iterations)
feat_type = '-'.join(args.feat_type)
feat_dim = args.feat_dim if feat_type not in ['iuv', 'iuvrgb'] else dataset.feat_default_dim[feat_type]
gs_params_group = dataset.gs_params_group[args.model]
gaussians = Feat2GaussianModel(dataset.sh_degree, feat_dim, gs_params_group)
scene = Scene(dataset, gaussians, opt=args, shuffle=True)
gaussians.training_setup(opt)
# if checkpoint:
# (model_params, first_iter) = torch.load(checkpoint)
# gaussians.restore(model_params, opt)
train_cams_init = scene.getTrainCameras().copy()
os.makedirs(scene.model_path + 'pose', exist_ok=True)
# save_pose(scene.model_path + 'pose' + "/pose_org.npy", gaussians.P, train_cams_init)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
warm_iter = 1000
start = perf_counter()
for iteration in range(first_iter, opt.iterations + 1):
# if network_gui.conn == None:
# network_gui.try_connect()
# while network_gui.conn != None:
# try:
# net_image_bytes = None
# custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
# if custom_cam != None:
# net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
# net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
# network_gui.send(net_image_bytes, dataset.source_path)
# if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
# break
# except Exception as e:
# network_gui.conn = None
iter_start.record()
if iteration > warm_iter:
if iteration == warm_iter+1:
gaussians.pc_feat.requires_grad_(False)
gaussians.setup_rendering_learning_rate()
gaussians.update_learning_rate(iteration - warm_iter)
else:
gaussians.update_warm_start_learning_rate(iteration)
if args.optim_pose==False:
gaussians.P.requires_grad_(False)
# (DISABLED) Every 1000 its we increase the levels of SH up to a maximum degree
# if iteration % 1000 == 0:
# gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
pose = gaussians.get_RT(viewpoint_cam.uid)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
gaussians.inference()
pretrained_loss_dict = {
'xyz': l1_loss(gaussians._xyz, gaussians.param_init['xyz']),
# 'f_dc': l1_loss(gaussians._features_dc, gaussians.param_init['f_dc']),
# 'f_rest': l1_loss(gaussians._features_rest, gaussians.param_init['f_rest']),
'opacity': l1_loss(gaussians._opacity, gaussians.param_init['opacity']),
'scaling': l1_loss(gaussians._scaling, gaussians.param_init['scaling']),
'rotation': l1_loss(gaussians._rotation, gaussians.param_init['rotation']),
# 'pose': l1_loss(gaussians.P, gaussians.param_init['pose']),
# 'focal': l1_loss(gaussians._focal_params, gaussians.param_init['focal']),
# 'pc_feat':l1_loss(gaussians.pc_feat, gaussians.param_init['pc_feat']),
}
if iteration <= warm_iter:
loss = sum(loss for key, loss in pretrained_loss_dict.items() if key in gs_params_group['head'])
Ll1 = torch.tensor(0)
if iteration > warm_iter:
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
# if feat_type in ['iuv', 'iuvrgb']:
# # Add scaling regularization for 'iuv' and 'iuvrgb' features
# # Prevents their gaussians scale from becoming too large to cause CUDA out of memory
# loss += l1_loss(gaussians._scaling, gaussians.param_init['scaling']) * 0.1
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
# training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render_gsplat, (pipe, background), pretrained_loss_dict)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
save_pose(scene.model_path + 'pose' + f"/pose_{iteration}.npy", gaussians.P, train_cams_init)
# (DISABLED) Densification
# if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
# gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
# gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
# if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
# size_threshold = 20 if iteration > opt.opacity_reset_interval else None
# gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
# if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
# gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
# if (iteration in checkpoint_iterations):
# print("\n[ITER {}] Saving Checkpoint".format(iteration))
# torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
end = perf_counter()
train_time = end - start
# We commented out log&save operations, and then calculate train time.
# train_time = np.array(train_time)
# print("total_test_time_epoch: ", 1)
# print("train_time_mean: ", train_time.mean())
# print("train_time_median: ", np.median(train_time))
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int,
default=[500, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7_000, \
8_000, 9_000, 10_000, 11_000, 12_000, 13_000, 14_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--scene", type=str, default=None)
parser.add_argument("--n_views", type=int, default=None)
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--optim_pose", action="store_true")
parser.add_argument("--feat_type", type=str, nargs='*', default=None, help="Feature type(s). Multiple types can be specified for combination.")
parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'")
parser.add_argument("--feat_dim", type=int, default=None, help="Feture dimension after PCA . If None, PCA is not applied.")
parser.add_argument("--model", type=str, default='G', help="Model of Feat2gs, 'G'='geometry'/'T'='texture'/'A'='all'")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
os.makedirs(args.model_path, exist_ok=True)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
# safe_state(args.quiet)
# Start GUI server, configure and run training
# network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)
# All done
print("\nTraining complete.")
|